Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
Autor(es): dc.creator | Manesco, João Renato Ribeiro | - |
Autor(es): dc.creator | Marana, Aparecido Nilceu | - |
Data de aceite: dc.date.accessioned | 2025-08-21T21:33:25Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T21:33:25Z | - |
Data de envio: dc.date.issued | 2023-07-29 | - |
Data de envio: dc.date.issued | 2023-07-29 | - |
Data de envio: dc.date.issued | 2021-12-31 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.1007/978-3-031-21689-3_20 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/11449/249522 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/249522 | - |
Descrição: dc.description | Human pose estimation in images is an important and challenging problem in Computer Vision. Currently, methods that employ deep learning techniques excel in the task of 2D human pose estimation. 2D human poses can be used in a diverse and broad set of applications, of great relevance to society. However, the use of 3D poses can lead to even more accurate and robust results. Since joint coordinates for 3D poses are difficult to estimate, fully convolutional methods tend to perform poorly. One possible solution is to estimate 3D poses based on 2D poses, which offer improved performance by delegating the exploration of image features to more mature 2D pose estimation techniques. The goal of this paper is to present a survey of recent advances on two-step techniques for 3D human pose estimation based on 2D human poses. | - |
Descrição: dc.description | Faculty of Sciences UNESP - São Paulo State University, SP | - |
Descrição: dc.description | Faculty of Sciences UNESP - São Paulo State University, SP | - |
Formato: dc.format | 266-281 | - |
Idioma: dc.language | en | - |
Relação: dc.relation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | - |
???dc.source???: dc.source | Scopus | - |
Palavras-chave: dc.subject | 2D human poses | - |
Palavras-chave: dc.subject | 3D human pose estimation | - |
Palavras-chave: dc.subject | Two-step 3D human pose estimation | - |
Título: dc.title | A Survey of Recent Advances on Two-Step 3D Human Pose Estimation | - |
Tipo de arquivo: dc.type | aula digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: