Parameter and coupling estimation in small networks of Izhikevich's neurons

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorUniversitat Politecnica de Catalunya-
Autor(es): dc.creatorAristides, R. P.-
Autor(es): dc.creatorPons, A. J.-
Autor(es): dc.creatorCerdeira, H. A.-
Autor(es): dc.creatorMasoller, C.-
Autor(es): dc.creatorTirabassi, G.-
Data de aceite: dc.date.accessioned2025-08-21T23:43:56Z-
Data de disponibilização: dc.date.available2025-08-21T23:43:56Z-
Data de envio: dc.date.issued2023-07-29-
Data de envio: dc.date.issued2023-07-29-
Data de envio: dc.date.issued2023-04-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1063/5.0144499-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/248724-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/248724-
Descrição: dc.descriptionNowadays, experimental techniques allow scientists to have access to large amounts of data. In order to obtain reliable information from the complex systems that produce these data, appropriate analysis tools are needed. The Kalman filter is a frequently used technique to infer, assuming a model of the system, the parameters of the model from uncertain observations. A well-known implementation of the Kalman filter, the unscented Kalman filter (UKF), was recently shown to be able to infer the connectivity of a set of coupled chaotic oscillators. In this work, we test whether the UKF can also reconstruct the connectivity of small groups of coupled neurons when their links are either electrical or chemical synapses. In particular, we consider Izhikevich neurons and aim to infer which neurons influence each other, considering simulated spike trains as the experimental observations used by the UKF. First, we verify that the UKF can recover the parameters of a single neuron, even when the parameters vary in time. Second, we analyze small neural ensembles and demonstrate that the UKF allows inferring the connectivity between the neurons, even for heterogeneous, directed, and temporally evolving networks. Our results show that time-dependent parameter and coupling estimation is possible in this nonlinearly coupled system.-
Descrição: dc.descriptionInstituto de Física Teórica Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II, Barra Funda-
Descrição: dc.descriptionDepartament de Fisica Universitat Politecnica de Catalunya, St. Nebridi 22-
Descrição: dc.descriptionInstituto de Física Teórica Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II, Barra Funda-
Idioma: dc.languageen-
Relação: dc.relationChaos-
???dc.source???: dc.sourceScopus-
Título: dc.titleParameter and coupling estimation in small networks of Izhikevich's neurons-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.