New Signal Processing-Based Methodology for Optimal Feature Selection of Corona Discharges Measurement in HVDC Systems

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorUniversidade de São Paulo (USP)-
Autor(es): dc.contributorFarol Pesquisa-
Autor(es): dc.contributorInterligação Elétrica Do Madeira S.A.-
Autor(es): dc.creatorDavid, Gabriel Augusto-
Autor(es): dc.creatorJunior, Pedro Oliveira Conceicao-
Autor(es): dc.creatorDotto, Fabio Romano Lofrano-
Autor(es): dc.creatorSantos, Benedito Roberto Dos-
Data de aceite: dc.date.accessioned2025-08-21T18:24:33Z-
Data de disponibilização: dc.date.available2025-08-21T18:24:33Z-
Data de envio: dc.date.issued2023-07-29-
Data de envio: dc.date.issued2023-07-29-
Data de envio: dc.date.issued2022-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1109/TIM.2023.3260879-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/248622-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/248622-
Descrição: dc.descriptionThis article presents a new method based on the combination of digital signal processing parameters for the selection of optimal characteristics of corona discharges in high voltage direct current (HVDC) systems, particularly for linearization of the discharge model for applications that require a simplified computational approach. The proposed method implements a new metric from the coefficient of variation (CV), CV $_{\mathbf {STFT}}$ , based on the short-time Fourier transform (STFT) and the Hinkley criterion to measure the spectral variability and determine the corona discharge profile in different situations. An experimental analysis was performed by applying voltages between ±30 and ±100 kV in a conductor, and electrical current signals proportional to the corona effect were collected through a data acquisition system. The results indicated that the application of the new method was successful in quantifying, in a simple way, the percentage of growth of corona discharges as a function of the voltage applied within the range of 40-80 kHz. Moreover, it showed 90%, 91%, 92%, 97%, 89%, 92%, and 93% of reliability in calculating the root-mean-square deviation (RMSD) based on approximation by a linear model. The frequency band resulting from this study proved to be favorable to establishing a threshold for the percentage of corona discharge growth according to its profile or condition of application, indicating this information may be useful in the construction of mobile devices with low consumption and computational performance, meeting the demands of Industry 4.0 and the Internet of Things.-
Descrição: dc.descriptionSão Paulo State University Department of Electrical Engineering, Bauru-
Descrição: dc.descriptionEscola de Engenharia de São Carlos University of São Paulo (EESC-USP), São Carlos-
Descrição: dc.descriptionDesenvolvimento e Consultoria Farol Pesquisa, Bauru-
Descrição: dc.descriptionInterligação Elétrica Do Madeira S.A.-
Descrição: dc.descriptionSão Paulo State University Department of Electrical Engineering, Bauru-
Idioma: dc.languageen-
Relação: dc.relationIEEE Transactions on Instrumentation and Measurement-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectCorona discharge-
Palavras-chave: dc.subjecthigh voltage direct current (HVDC)-
Palavras-chave: dc.subjectinstrumentation and measurement-
Palavras-chave: dc.subjectsignal processing-
Título: dc.titleNew Signal Processing-Based Methodology for Optimal Feature Selection of Corona Discharges Measurement in HVDC Systems-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.