Integrating artificial neural networks and cellular automata model for spatial-temporal load forecasting

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorCENTROSUR Electric Distribution Utility-
Autor(es): dc.contributorUniversity of Cuenca-
Autor(es): dc.creatorZambrano-Asanza, S.-
Autor(es): dc.creatorMorales, R. E.-
Autor(es): dc.creatorMontalvan, Joel A.-
Autor(es): dc.creatorFranco, John F.-
Data de aceite: dc.date.accessioned2025-08-21T16:21:23Z-
Data de disponibilização: dc.date.available2025-08-21T16:21:23Z-
Data de envio: dc.date.issued2023-07-29-
Data de envio: dc.date.issued2023-07-29-
Data de envio: dc.date.issued2023-06-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.ijepes.2022.108906-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/248101-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/248101-
Descrição: dc.descriptionThe long-term distribution planning should include an understanding of consumer behavior and needs to develop strategic expansion alternatives that meet the future demand. The magnitude of growth along with the place where and when it will be developed are determined by the spatial load forecasting. Thus, this paper proposes a spatial-temporal load forecasting method to recognize and predict development patterns using historical dynamics and determine the development of consumers and electric load in small areas. An artificial neural network is integrated to a cellular automaton method to establish transition rules, based on land-use preferences, neighborhood states, spatial constraints, and a stochastic disturbance. The main feature is the incorporation of temporality, as well as taking advantage of geospatial-temporal data analytics to calibrate and validate a holistic and integral framework. Validation consists of measuring the spatial error pattern during the training and testing phase. The performance of the method is assessed in the service area of an Ecuadorian power utility. The knowledge extraction from large-scale data, evaluating the sensitivity of parameters and spatial resolution was carried out in reasonable times. It is concluded that adequate normalization and use of temporality in the spatial factors improve the error in the spatial-temporal load forecasting.-
Descrição: dc.descriptionDepartment of Electrical Engineering São Paulo State University – UNESP Ilha Solteira, SP-
Descrição: dc.descriptionDepartment of Planning CENTROSUR Electric Distribution Utility-
Descrição: dc.descriptionSchool of Electrical Engineering University of Cuenca-
Descrição: dc.descriptionSchool of Energy Engineering São Paulo State University – UNESP-
Descrição: dc.descriptionDepartment of Electrical Engineering São Paulo State University – UNESP Ilha Solteira, SP-
Descrição: dc.descriptionSchool of Energy Engineering São Paulo State University – UNESP-
Idioma: dc.languageen-
Relação: dc.relationInternational Journal of Electrical Power and Energy Systems-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectArtificial neural network-
Palavras-chave: dc.subjectBig data analytic-
Palavras-chave: dc.subjectCellular automata-
Palavras-chave: dc.subjectDistribution planning-
Palavras-chave: dc.subjectGeospatial analysis-
Palavras-chave: dc.subjectSpatial load forecasting-
Título: dc.titleIntegrating artificial neural networks and cellular automata model for spatial-temporal load forecasting-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.