Numerical verification of sharp corner behavior for Giesekus and Phan-Thien-Tanner fluids

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversity of Bath-
Autor(es): dc.contributorUniversidade Federal Do Rio Grande Do Norte-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorUniversidade de São Paulo (USP)-
Autor(es): dc.creatorEvans, J. D.-
Autor(es): dc.creatorPalhares Junior, I. L.-
Autor(es): dc.creatorOishi, C. M.-
Autor(es): dc.creatorRuano Neto, F.-
Data de aceite: dc.date.accessioned2025-08-21T16:21:20Z-
Data de disponibilização: dc.date.available2025-08-21T16:21:20Z-
Data de envio: dc.date.issued2023-07-29-
Data de envio: dc.date.issued2023-07-29-
Data de envio: dc.date.issued2022-10-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1063/5.0125940-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/248031-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/248031-
Descrição: dc.descriptionWe verify numerically the theoretical stress singularities for two viscoelastic models that occur at sharp corners. The models considered are the Giesekus and Phan-Thien-Tanner (PTT), both of which are shear thinning and are able to capture realistic polymer behaviors. The theoretical asymptotic behavior of these two models at sharp corners has previously been found to involve an integrable solvent and polymer elastic stress singularity, along with narrow elastic stress boundary layers at the walls of the corner. We demonstrate here the validity of these theoretical results through numerical simulation of the classical contraction flow and analyzing the 270 ° corner. Numerical results are presented, verifying both the solvent and polymer stress singularities, as well as the dominant terms in the constitutive equations supporting the elastic boundary layer structures. For comparison at Weissenberg order one, we consider both the Cartesian stress formulation and the alternative natural stress formulation of the viscoelastic constitutive equations. Numerically, it is shown that the natural stress formulation gives increased accuracy and convergence behavior at the stress singularity and, moreover, encounters no upper Weissenberg number limitation in the global flow simulation for sufficiently large solvent viscosity fraction. The numerical simulations with the Cartesian stress formulation cannot reach such high Weissenberg numbers and run into convergence failure associated with the so-called high Weissenberg number problem.-
Descrição: dc.descriptionDepartment of Mathematical Sciences University of Bath-
Descrição: dc.descriptionInstituto Metrópole Digital Universidade Federal Do Rio Grande Do Norte, RN-
Descrição: dc.descriptionDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia Universidade Estadual Paulista Júlio de Mesquita Filho, Presidente Prudente-
Descrição: dc.descriptionInstituto de Ciências Matemáticas e de Computação Universidade de São Paulo, São Carlos-
Descrição: dc.descriptionDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia Universidade Estadual Paulista Júlio de Mesquita Filho, Presidente Prudente-
Idioma: dc.languageen-
Relação: dc.relationPhysics of Fluids-
???dc.source???: dc.sourceScopus-
Título: dc.titleNumerical verification of sharp corner behavior for Giesekus and Phan-Thien-Tanner fluids-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.