
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Federal Technological University of Parana - UTFPR-GP | - |
| Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
| Autor(es): dc.contributor | Federal Technological University of Parana - UTFPR | - |
| Autor(es): dc.creator | Amaro de Faria, A. C. | - |
| Autor(es): dc.creator | de Souza Dutra, A. | - |
| Autor(es): dc.creator | Dresseno, J. E. | - |
| Autor(es): dc.creator | Lourenço, R. E. | - |
| Data de aceite: dc.date.accessioned | 2025-08-21T15:30:55Z | - |
| Data de disponibilização: dc.date.available | 2025-08-21T15:30:55Z | - |
| Data de envio: dc.date.issued | 2023-07-29 | - |
| Data de envio: dc.date.issued | 2023-07-29 | - |
| Data de envio: dc.date.issued | 2023-01-31 | - |
| Fonte completa do material: dc.identifier | http://dx.doi.org/10.1007/s13538-022-01220-6 | - |
| Fonte completa do material: dc.identifier | http://hdl.handle.net/11449/247917 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/247917 | - |
| Descrição: dc.description | We analyze a method for solving a second-order nonlinear differential equation in 1 + 1 dimensions, applying it to some nonlinear systems. A particular solution for systems with this dimensionality is known as kink. In this study, we focus on revealing that any kink in 1 + 1 dimensions, accruing from models with one scalar field, can be straightforwardly obtained from a scalar field solution to a first-order linear differential equation with constant coefficients. This is accomplished by a suitable field transformation and we examine a few models and analyze how the introduction of an underlying scalar field can shed new light on models with one scalar field. In this work, in contrast to what is expected, we show that any kink in (1 + 1) dimensions, originating from models with just one scalar field, can be obtained from a master linear first-order differential equation using a convenient field transformation, which leads to a linear differential equation for the transformation function. A general approach is introduced and discussed, including a few subsequent cogent and important physical applications. This approach for certain values of parameters presents symmetry breaking like the λϕ4 model. The other parameter values correspond to a model with no minima, presenting kink configurations for the scalar field. In this study, we focus on revealing that any kink in (1 + 1) dimensions, accruing from models with one scalar field, can be obtained from the master linear first-order differential equation. This is accomplished through a convenient field transformation, obeying a linear differential equation for the transformation function. After analyzing a few models, we present a new one using the method developed in this work. | - |
| Descrição: dc.description | Federal Technological University of Parana - UTFPR-GP, PR | - |
| Descrição: dc.description | Sao Paulo State University - Unes, Campus de Guaratinguetá, DFQ, Av. Dr. Ariberto Pereira da Cunha, 333, P.C: 205, SP | - |
| Descrição: dc.description | Federal Technological University of Parana - UTFPR, PR | - |
| Descrição: dc.description | Sao Paulo State University - Unes, Campus de Guaratinguetá, DFQ, Av. Dr. Ariberto Pereira da Cunha, 333, P.C: 205, SP | - |
| Idioma: dc.language | en | - |
| Relação: dc.relation | Brazilian Journal of Physics | - |
| ???dc.source???: dc.source | Scopus | - |
| Palavras-chave: dc.subject | Deformed kinks | - |
| Palavras-chave: dc.subject | Solitons | - |
| Palavras-chave: dc.subject | Solution mapping | - |
| Título: dc.title | Mapping for BPS Solitons of Scalar Field Potentials in 1 + 1 Dimensions and Family of Solutions | - |
| Tipo de arquivo: dc.type | livro digital | - |
| Aparece nas coleções: | Repositório Institucional - Unesp | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: