A multiscale approach for electronic transport simulation of carbon nanostructures in aqueous solvent

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorUppsala University-
Autor(es): dc.creatorde Freitas Martins, Ernane-
Autor(es): dc.creatorScheicher, Ralph Hendrik-
Autor(es): dc.creatorRocha, Alexandre Reily-
Autor(es): dc.creatorFeliciano, Gustavo Troiano-
Data de aceite: dc.date.accessioned2025-08-21T20:29:18Z-
Data de disponibilização: dc.date.available2025-08-21T20:29:18Z-
Data de envio: dc.date.issued2023-07-29-
Data de envio: dc.date.issued2023-07-29-
Data de envio: dc.date.issued2022-09-21-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1039/d2cp02474h-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/247733-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/247733-
Descrição: dc.descriptionTheoretical works addressing electronic nano-devices operating in an aqueous environment often neglect solvent effects. In order to assess the role played by the polarization effects on the electronic transport properties of solvated graphene, for example in possible bio-sensing applications, we have used here a combination of polarizable force-field molecular dynamics, hybrid quantum mechanics/molecular mechanics (QM/MM) approach, density functional theory, and non-equilibrium Green's function method. We considered different solvation conditions, the presence of defects in graphene, as well as various choices for the partitions between the quantum and classical regions in QM/MM, in which we explicitly account for polarization effects. Our results show that the polarization effects on graphene lead to changes in the structure of interfacial water molecules which are more pronounced in the vicinity of defects. The presence of water leads to increased scattering due to the long-range charge interactions with graphene. At the same time, changes in the conductance due to polarization or salt concentration are found to be small, paving the way for robust electronic nano-devices operating in aqueous environments.-
Descrição: dc.descriptionInstitute of Theoretical Physics São Paulo State University (UNESP), São Paulo-
Descrição: dc.descriptionDivision of Materials Theory Department of Physics and Astronomy Uppsala University-
Descrição: dc.descriptionInstitute of Chemistry São Paulo State University (UNESP)-
Descrição: dc.descriptionInstitute of Theoretical Physics São Paulo State University (UNESP), São Paulo-
Descrição: dc.descriptionInstitute of Chemistry São Paulo State University (UNESP)-
Formato: dc.format24404-24412-
Idioma: dc.languageen-
Relação: dc.relationPhysical Chemistry Chemical Physics-
???dc.source???: dc.sourceScopus-
Título: dc.titleA multiscale approach for electronic transport simulation of carbon nanostructures in aqueous solvent-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.