Use of Biometric Images to Predict Body Weight and Hot Carcass Weight of Nellore Cattle

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversity of Wisconsin-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorCominotte, Alexandre-
Autor(es): dc.creatorFernandes, Arthur-
Autor(es): dc.creatorDórea, João-
Autor(es): dc.creatorRosa, Guilherme-
Autor(es): dc.creatorTorres, Rodrigo-
Autor(es): dc.creatorPereira, Guilherme-
Autor(es): dc.creatorBaldassini, Welder-
Autor(es): dc.creatorMachado Neto, Otávio-
Data de aceite: dc.date.accessioned2025-08-21T19:50:25Z-
Data de disponibilização: dc.date.available2025-08-21T19:50:25Z-
Data de envio: dc.date.issued2023-07-29-
Data de envio: dc.date.issued2023-07-29-
Data de envio: dc.date.issued2023-05-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.3390/ani13101679-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/247441-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/247441-
Descrição: dc.descriptionThe objective of this study was to evaluate different methods of predicting body weight (BW) and hot carcass weight (HCW) from biometric measurements obtained through three-dimensional images of Nellore cattle. We collected BW and HCW of 1350 male Nellore cattle (bulls and steers) from four different experiments. Three-dimensional images of each animal were obtained using the Kinect® model 1473 sensor (Microsoft Corporation, Redmond, WA, USA). Models were compared based on root mean square error estimation and concordance correlation coefficient. The predictive quality of the approaches used multiple linear regression (MLR); least absolute shrinkage and selection operator (LASSO); partial least square (PLS), and artificial neutral network (ANN) and was affected not only by the conditions (set) but also by the objective (BW vs. HCW). The most stable for BW was the ANN (Set 1: RMSEP = 19.68; CCC = 0.73; Set 2: RMSEP = 27.22; CCC = 0.66; Set 3: RMSEP = 27.23; CCC = 0.70; Set 4: RMSEP = 33.74; CCC = 0.74), which showed predictive quality regardless of the set analyzed. However, when evaluating predictive quality for HCW, the models obtained by LASSO and PLS showed greater quality over the different sets. Overall, the use of three-dimensional images was able to predict BW and HCW in Nellore cattle.-
Descrição: dc.descriptionDepartment of Animal Science University of Wisconsin-
Descrição: dc.descriptionSchool of Agricultural and Veterinarian Sciences São Paulo State University, SP-
Descrição: dc.descriptionDepartment of Biostatistics and Medical Informatics University of Wisconsin-
Descrição: dc.descriptionSchool of Veterinary and Animal Science São Paulo State University, SP-
Descrição: dc.descriptionSchool of Agricultural and Veterinarian Sciences São Paulo State University, SP-
Descrição: dc.descriptionSchool of Veterinary and Animal Science São Paulo State University, SP-
Idioma: dc.languageen-
Relação: dc.relationAnimals-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectbeef cattle-
Palavras-chave: dc.subjectcomputer vision-
Palavras-chave: dc.subjectimage analysis-
Palavras-chave: dc.subjectKinect®-
Palavras-chave: dc.subjectmodels-
Título: dc.titleUse of Biometric Images to Predict Body Weight and Hot Carcass Weight of Nellore Cattle-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.