Application of an Electronic Nose as a New Technology for Rapid Detection of Adulteration in Honey

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade de São Paulo (USP)-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorGonçalves, Wellington Belarmino-
Autor(es): dc.creatorTeixeira, Wanderson Sirley Reis-
Autor(es): dc.creatorCervantes, Evelyn Perez-
Autor(es): dc.creatorMioni, Mateus de Souza Ribeiro-
Autor(es): dc.creatorSampaio, Aryele Nunes da Cruz Encide-
Autor(es): dc.creatorMartins, Otávio Augusto-
Autor(es): dc.creatorGruber, Jonas-
Autor(es): dc.creatorPereira, Juliano Gonçalves-
Data de aceite: dc.date.accessioned2025-08-21T19:29:15Z-
Data de disponibilização: dc.date.available2025-08-21T19:29:15Z-
Data de envio: dc.date.issued2023-07-29-
Data de envio: dc.date.issued2023-07-29-
Data de envio: dc.date.issued2023-04-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.3390/app13084881-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/247287-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/247287-
Descrição: dc.descriptionThis work demonstrates the application of an electronic nose (e-nose) for discrimination between authentic and adulterated honey. The developed e-nose is based on electrodes covered with ionogel (ionic liquid + gelatin + Fe3O4 nanoparticle) films. Authentic and adulterated honey samples were submitted to e-nose analysis, and the capacity of the sensors for discrimination between authentic and adulterated honey was evaluated using principal component analysis (PCA) based on average relative response data. From the PCA biplot, it was possible to note two well-defined clusters and no intersection was observed. To evaluate the relative response data as input for autonomous classification, different machine learning algorithms were evaluated, namely instance based (IBK), Kstar, Trees-J48 (J48), random forest (RF), multilayer perceptron (MLP), naive Bayes (NB), and sequential minimal optimization (SMO). Considering the average data, the highest accuracy was obtained for Kstar: 100% (k-fold = 3). Additionally, this algorithm was also compared regarding its sensitivity and specificity, both being 100% for both features. Thus, due to the rapidity, simplicity, and accuracy of the developed methodology, the technology based on e-noses has the potential to be applied to honey quality control.-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionInstituto de Química Universidade de São Paulo, SP-
Descrição: dc.descriptionFaculdade de Medicina Veterinária e Zootecnia Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), SP-
Descrição: dc.descriptionInstituto de Matemática e Estatística Universidade de São Paulo, SP-
Descrição: dc.descriptionFaculdade de Medicina Veterinária e Zootecnia Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), SP-
Descrição: dc.descriptionCNPq: 165186/2015-1-
Descrição: dc.descriptionCNPq: 307501/2019-1-
Descrição: dc.descriptionCNPq: 424027/2018-6-
Idioma: dc.languageen-
Relação: dc.relationApplied Sciences (Switzerland)-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectelectronic nose-
Palavras-chave: dc.subjecthoney adulteration-
Palavras-chave: dc.subjecthoney quality control-
Palavras-chave: dc.subjectmachine learning-
Palavras-chave: dc.subjectmultivariate analysis-
Palavras-chave: dc.subjectsensors-
Título: dc.titleApplication of an Electronic Nose as a New Technology for Rapid Detection of Adulteration in Honey-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.