Determination of Harmonic Parameters in Pathological Voices—Efficient Algorithm

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorInstituto Politécnico de Bragança-
Autor(es): dc.contributorUniversity of Porto (FEUP)-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorFernandes, Joana Filipa Teixeira-
Autor(es): dc.creatorFreitas, Diamantino-
Autor(es): dc.creatorJunior, Arnaldo Candido-
Autor(es): dc.creatorTeixeira, João Paulo-
Data de aceite: dc.date.accessioned2025-08-21T15:15:11Z-
Data de disponibilização: dc.date.available2025-08-21T15:15:11Z-
Data de envio: dc.date.issued2023-07-29-
Data de envio: dc.date.issued2023-07-29-
Data de envio: dc.date.issued2023-01-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.3390/app13042333-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/246925-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/246925-
Descrição: dc.descriptionFeatured Application: The paper describes a low-complexity/efficient algorithm to determine the short-term Autocorrelation, HNR, and NHR in sustained vowel audios, to be used in stand-alone devices with low computational power. These parameters can be used as input features of a smart medical decision support system for speech pathology diagnosis. The harmonic parameters Autocorrelation, Harmonic to Noise Ratio (HNR), and Noise to Harmonic Ratio are related to vocal quality, providing alternative measures of the harmonic energy of a speech signal. They will be used as input resources for an intelligent medical decision support system for the diagnosis of speech pathology. An efficient algorithm is important when implementing it on low-power devices. This article presents an algorithm that determines these parameters by optimizing the window type and length. The method used comparatively analyzes the values of the algorithm, with different combinations of window and size and a reference value. Hamming, Hanning, and Blackman windows with lengths of 3, 6, 12, and 24 glottal cycles and various sampling frequencies were investigated. As a result, we present an efficient algorithm that determines the parameters using the Hanning window with a length of six glottal cycles. The mean difference of Autocorrelation is less than 0.004, and that of HNR is less than 0.42 dB. In conclusion, this algorithm allows extraction of the parameters close to the reference values. In Autocorrelation, there are no significant effects of sampling frequency. However, it should be used cautiously for HNR with lower sampling rates.-
Descrição: dc.descriptionResearch Centre in Digitalization and Intelligent Robotics (CeDRI) Instituto Politécnico de Bragança, Campus de Santa Apolónia-
Descrição: dc.descriptionFaculty of Engineering University of Porto (FEUP)-
Descrição: dc.descriptionInstitute of Biosciences Language and Physical Sciences São Paulo State University-
Descrição: dc.descriptionLaboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC) Instituto Politécnico de Bragança, Campus de Santa Apolónia-
Descrição: dc.descriptionApplied Management Research Unit (UNIAG) Instituto Politécnico de Bragança, Campus de Santa Apolónia-
Descrição: dc.descriptionInstitute of Biosciences Language and Physical Sciences São Paulo State University-
Idioma: dc.languageen-
Relação: dc.relationApplied Sciences (Switzerland)-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectautocorrelation-
Palavras-chave: dc.subjectautocorrelation algorithm-
Palavras-chave: dc.subjectharmonic to noise ratio-
Palavras-chave: dc.subjectHNR algorithm-
Palavras-chave: dc.subjectnoise to harmonic ratio-
Palavras-chave: dc.subjectvoice disorder parameters-
Título: dc.titleDetermination of Harmonic Parameters in Pathological Voices—Efficient Algorithm-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.