A Memetic Framework for Solving the Lot Sizing and Scheduling Problem in Soft Drink Plants

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade de São Paulo (USP)-
Autor(es): dc.contributorUniv Lavras-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorUniversidade Federal de São Carlos (UFSCar)-
Autor(es): dc.creatorToledo, Claudio F. M.-
Autor(es): dc.creatorArantes, Marcio S.-
Autor(es): dc.creatorFranca, Paulo M.-
Autor(es): dc.creatorMorabito, Reinaldo-
Autor(es): dc.creatorChiong, R.-
Autor(es): dc.creatorWeise, T.-
Autor(es): dc.creatorMichalewicz, Z.-
Data de aceite: dc.date.accessioned2025-08-21T19:25:35Z-
Data de disponibilização: dc.date.available2025-08-21T19:25:35Z-
Data de envio: dc.date.issued2023-07-29-
Data de envio: dc.date.issued2023-07-29-
Data de envio: dc.date.issued2012-01-01-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/245346-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/245346-
Descrição: dc.descriptionThis chapter presents a memetic framework for solving the Synchronized and Integrated Two-level Lot Sizing and Scheduling Problem (SITLSP). A set of algorithms from this framework is thoroughly evaluated. The SITLSP is a real-world problem typically found in soft drink plants, but its presence can also be seen in many other multi-level production processes. The SITLSP involves a two-level production process where lot sizing and scheduling decisions have to be made for raw material storage in tanks and soft drink bottling in various production lines. The work presented here extends a previously proposed memetic computing approach that combines a multi-population genetic algorithm with a threshold accepting heuristic. The novelty and its main contribution is the use of tabu search combined with the multi-population genetic algorithm as a method to solve the SITLSP. Two real-world problem sets, both provided by a leading market soft drink company, have been used for the computational experiments. The results show that the memetic algorithms proposed significantly outperform the previously reported solutions used for comparison.-
Descrição: dc.descriptionUniv Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Carlos, SP, Brazil-
Descrição: dc.descriptionUniv Lavras, Dept Comp Sci, BR-37200000 Lavras, MG, Brazil-
Descrição: dc.descriptionUNESP, Dept Math Stat & Comp, BR-19060900 P Prudente, SP, Brazil-
Descrição: dc.descriptionUniv Fed Sao Carlos, Dept Prod Engn, BR-13565905 Sao Carlos, SP, Brazil-
Descrição: dc.descriptionUNESP, Dept Math Stat & Comp, BR-19060900 P Prudente, SP, Brazil-
Formato: dc.format59-93-
Idioma: dc.languageen-
Publicador: dc.publisherSpringer-
Relação: dc.relationVariants Of Evolutionary Algorithms For Real-world Applications-
???dc.source???: dc.sourceWeb of Science-
Título: dc.titleA Memetic Framework for Solving the Lot Sizing and Scheduling Problem in Soft Drink Plants-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.