Asymptotic soliton train solutions of the defocusing nonlinear Schrödinger equation

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorRussian Academy of Sciences-
Autor(es): dc.contributorUzbek Academy of Sciences-
Autor(es): dc.creatorKraenkel, Roberto André-
Autor(es): dc.creatorKamchatnov, A. M.-
Autor(es): dc.creatorUmarov, B. A.-
Data de aceite: dc.date.accessioned2025-08-21T19:28:49Z-
Data de disponibilização: dc.date.available2025-08-21T19:28:49Z-
Data de envio: dc.date.issued2014-05-20-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2014-05-20-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2002-09-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1103/PhysRevE.66.036609-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/244047-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/244047-
Descrição: dc.descriptionAsymptotic behavior of initially “large and smooth” pulses is investigated at two typical stages of their evolution governed by the defocusing nonlinear Schrödinger equation. At first, wave breaking phenomenon is studied in the limit of small dispersion. A solution of the Whitham modulational equations is found for the case of dissipationless shock wave arising after the wave breaking point. Then, asymptotic soliton trains arising eventually from a large and smooth initial pulse are studied by means of a semiclassical method. The parameter varying along the soliton train is calculated from the generalized Bohr-Sommerfeld quantization rule, so that the distribution of eigenvalues depends on two functions—intensity [formula presented] of the initial pulse and its initial chirp [formula presented] The influence of the initial chirp on the asymptotic state is investigated. Excellent agreement of the numerical solution of the defocusing NLS equation with predictions of the asymptotic theory is found. © 2002 The American Physical Society.-
Descrição: dc.descriptionRussian Acad Sci, Inst Spect, Troitsk 142190, Moscow Region, Russia-
Descrição: dc.descriptionUniv Estadual Paulista, UNESP, Inst Fis Teor, BR-01405900 São Paulo, Brazil-
Descrição: dc.descriptionUzbek Acad Sci, Phys Tech Inst, Tashkent 700084 84, Uzbekistan-
Descrição: dc.descriptionInstitute of Spectroscopy Russian Academy of Sciences, Troitsk, Moscow Region, 142190-
Descrição: dc.descriptionInstituto de Física Teórica Universidade Estadual Paulista–UNESP, Rua Pamplona 145, São Paulo, 01405-900-
Descrição: dc.descriptionPhysical-Technical Institute Uzbek Academy of Sciences, G. Mavlyanov Street, 2-b, Tashkent-84, 700084-
Descrição: dc.descriptionUniv Estadual Paulista, UNESP, Inst Fis Teor, BR-01405900 São Paulo, Brazil-
Descrição: dc.descriptionInstituto de Física Teórica Universidade Estadual Paulista–UNESP, Rua Pamplona 145, São Paulo, 01405-900-
Formato: dc.format10-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Publicador: dc.publisherAmer Physical Soc-
Relação: dc.relationPhysical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics-
Direitos: dc.rightsinfo:eu-repo/semantics/openAccess-
???dc.source???: dc.sourceWeb of Science-
???dc.source???: dc.sourceScopus-
Título: dc.titleAsymptotic soliton train solutions of the defocusing nonlinear Schrödinger equation-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.