Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Martins, Antonio Cesar Germano | - |
Autor(es): dc.contributor | Silva, Darllan Collins da Cunha e | - |
Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
Autor(es): dc.creator | Fernandes, Wanessa Monteiro | - |
Data de aceite: dc.date.accessioned | 2025-08-21T18:18:51Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T18:18:51Z | - |
Data de envio: dc.date.issued | 2023-05-19 | - |
Data de envio: dc.date.issued | 2023-05-19 | - |
Data de envio: dc.date.issued | 2023-02-14 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/11449/243539 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/243539 | - |
Descrição: dc.description | O sensoriamento remoto tem grande destaque na análise e monitoramento da superfície terrestre, especialmente devido a possibilidade de analisar grandes extensões de área, com destaque para os métodos computacionais que utilizam índices baseados nos canais do espectro eletromagnético. Visto isso, o objetivo deste estudo foi utilizar índices do espectro do visível e o NDVI (Normalized Difference Vegetation Index) obtidos a partir de imagens do satélite CBERS 4A em conjunto com a aplicação do classificador Random Forest para a análise de regiões no entorno da represa de Itupararanga, localizada na Região Metropolitana de Sorocaba (RMS). Para isso, utilizou-se os softawares QGis e Rstudio, nos quais foram realizados o pré-processamento das imagens, cálculo dos índices, coletas de imagens de treinamento das regiões características e implementação da Random Forest. As classes de cobertura do solo obtidas foram agricultura, área urbanizada, corpo hídrico, solo exposto, vegetação arbórea e vegetação rasteira, permitindo uma análise qualitativa e quantitativa pela Random Forest. Observou-se que o NDVI apresentou um melhor desempenho em relação aos outros índices utilizados na segmentação das diversas regiões de cobertura do solo, além da banda do infravermelho próximo (NIR), sendo os descritores mais relevantes para a classificação das regiões usando a Random Forest. | - |
Descrição: dc.description | Remote sensing has great prominence in the analysis and monitoring of the Earth's surface, since through sensors it is possible to analyze large areas. One of the methods for this analysis are those that use indices based on the channels from the electromagnetic spectrum. This research aimed to study the use of visible spectrum indices and NDVI (Normalized Difference Vegetation Index) obtained from CBERS 4A satellite images and a Radom Forest as a classifier for the analysis of regions around the Itupararanga dam. For this, the softwares QGis and Rstudio were used, in which the pre-processing of the images, calculation of the indices, collection of training images of the characteristic regions and implementation of the Random Forest were carried out. The following land cover classes were considered in this study: agriculture, urbanized area, water, exposed soil, arboreal vegetation and undergrowth. In addition to the visual qualitative analysis of the index relevancies, the use of Random Forest allowed a quantitative evaluation. It was observed that the NDVI presents an excellent result in the segmentation of the different land cover regions and that, individually, the near infrared band (NIR) and the NDVI are the most relevant descriptors for the classification of the regions using Random Forest. | - |
Descrição: dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | - |
Descrição: dc.description | CAPES:001 | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Publicador: dc.publisher | Universidade Estadual Paulista (UNESP) | - |
Direitos: dc.rights | info:eu-repo/semantics/openAccess | - |
Palavras-chave: dc.subject | CBERS4A | - |
Palavras-chave: dc.subject | Geoprocessamento | - |
Palavras-chave: dc.subject | Random Forest | - |
Título: dc.title | NDVI e índices do espectro visível como descritores de uma Random Forest para classificar a cobertura do solo no entorno da Represa de Itupararanga - SP por meio de imagens do satélite CBERS4A | - |
Título: dc.title | NDVI and visible spectrum indices as descriptors of a Random Forest to classify the land cover around the dam Itupararanga - SP through CBERS4A satellite images | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: