BIOPHYSICAL CHARACTERISTICS OF SOYBEAN ESTIMATED BY REMOTE SENSING ASSOCIATED WITH ARTIFICIAL INTELLIGENCE

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorLouisiana State University-
Autor(es): dc.contributorAuburn University-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorCarneiro, Franciele Morlin-
Autor(es): dc.creatorde OLIVEIRA, Mailson Freire-
Autor(es): dc.creatorde ALMEIDA, Samira Luns Hatum-
Autor(es): dc.creatorde BRITO FILHO, Armando Lopes-
Autor(es): dc.creatorFurlani, Carlos Eduardo Angeli-
Autor(es): dc.creatorRolim, Glauco de Souza-
Autor(es): dc.creatorFerraudo, Antonio Sergio-
Autor(es): dc.creatorda SILVA, Rouverson Pereira-
Data de aceite: dc.date.accessioned2025-08-21T16:39:59Z-
Data de disponibilização: dc.date.available2025-08-21T16:39:59Z-
Data de envio: dc.date.issued2023-03-01-
Data de envio: dc.date.issued2023-03-01-
Data de envio: dc.date.issued2022-02-15-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.14393/BJ-v38n0a2022-55925-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/241761-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/241761-
Descrição: dc.descriptionThe biophysical characteristics of vegetative canopies, such as biomass, height, and canopy diameter, are of paramount importance for the study of the development and productive behavior of crops. Faced with a scarcity of studies aimed at estimating these parameters, the objective of this study was to evaluate the performance of artificial neural networks (ANNs) applied to Proximal Remote Sensing (PRS) to estimate biophysical characteristics of soybean culture. The data used to train and validate the ANNs came from an experiment composed of 65 plots with 30 x 30 m mesh, its development was carried out in the 2016/2017 crop in the Brazilian agricultural area. The evaluations were carried out at 30, 45, 60, and 75 days after sowing (DAS), monitoring the spatial and temporal variability of the biophysical characteristics of the soybean crop. Vegetation indexes were collected using canopy sensors. The accuracy and precision were determined by the coefficient of determination (R2) and the error of the forecasts by MAPE (Mean Absolute Percentage Error). PRS and ANNs showed high potential for application in agriculture, since they obtained good performance in the estimation of height (R2 = 0.89) and canopy diameter (R2 = 0.96), being fresh biomass (R2 =0.98) and dry biomass (R2 = 0.97) were the best-estimated variables.-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionSchool of Plant Environmental and Soil Sciences Louisiana State University-
Descrição: dc.descriptionCrop Soil & Environmental Sciences Department Auburn University-
Descrição: dc.descriptionPostgraduate program in Agronomy (Crop Production) School of Agricultural and Veterinarian Sciences São Paulo State University, São Paulo-
Descrição: dc.descriptionPostgraduate program in Agronomy (Soil Science) School of Agricultural and Veterinarian Sciences São Paulo State University, São Paulo-
Descrição: dc.descriptionEngineering and Exact Sciences Department School of Agricultural and Veterinarian Sciences São Paulo State University, São Paulo-
Descrição: dc.descriptionPostgraduate program in Agronomy (Crop Production) School of Agricultural and Veterinarian Sciences São Paulo State University, São Paulo-
Descrição: dc.descriptionPostgraduate program in Agronomy (Soil Science) School of Agricultural and Veterinarian Sciences São Paulo State University, São Paulo-
Descrição: dc.descriptionEngineering and Exact Sciences Department School of Agricultural and Veterinarian Sciences São Paulo State University, São Paulo-
Descrição: dc.descriptionCNPq: 142367/20150-
Idioma: dc.languageen-
Relação: dc.relationBioscience Journal-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectActive Optical Sensor-
Palavras-chave: dc.subjectArtificial Neural Networks-
Palavras-chave: dc.subjectGlycine max L-
Palavras-chave: dc.subjectMachine Learning-
Palavras-chave: dc.subjectVegetation Index-
Título: dc.titleBIOPHYSICAL CHARACTERISTICS OF SOYBEAN ESTIMATED BY REMOTE SENSING ASSOCIATED WITH ARTIFICIAL INTELLIGENCE-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.