ComplexWoundDB: A Database for Automatic Complex Wound Tissue Categorization

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorSchool of Engineering and Informatics-
Autor(es): dc.creatorPereira, Talita A.-
Autor(es): dc.creatorPopim, Regina C.-
Autor(es): dc.creatorPassos, Leandro A.-
Autor(es): dc.creatorPereira, Danillo R.-
Autor(es): dc.creatorPereira, Clayton R.-
Autor(es): dc.creatorPapa, Joao P.-
Data de aceite: dc.date.accessioned2025-08-21T22:46:10Z-
Data de disponibilização: dc.date.available2025-08-21T22:46:10Z-
Data de envio: dc.date.issued2023-03-01-
Data de envio: dc.date.issued2023-03-01-
Data de envio: dc.date.issued2021-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1109/IWSSIP55020.2022.9854419-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/241594-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/241594-
Descrição: dc.descriptionComplex wounds usually face partial or total loss of skin thickness, healing by secondary intention. They can be acute or chronic, figuring infections, ischemia and tissue necrosis, and association with systemic diseases. Research institutes around the globe report countless cases, ending up in a severe public health problem, for they involve human resources (e.g., physicians and health care professionals) and negatively impact life quality. This paper presents a new database for automatically categorizing complex wounds with five categories, i.e., non-wound area, granulation, fibrinoid tissue, and dry necrosis, hematoma. The images comprise different scenarios with complex wounds caused by pressure, vascular ulcers, diabetes, burn, and complications after surgical interventions. The dataset, called Complex WoundDB, is unique because it figures pixel-level classifications from 27 images obtained in the wild, i.e., images are collected at the patients' homes, labeled by four health professionals. Further experiments with distinct machine learning techniques evidence the challenges in addressing the problem of computer-aided complex wound tissue categorization. The manuscript sheds light on future directions in the area, with a detailed comparison among other databased widely used in the literature.-
Descrição: dc.descriptionSão Paulo State University Botucatu Medical School Nursing Department-
Descrição: dc.descriptionUniversity of Wolverhampton Cmi Lab School of Engineering and Informatics-
Descrição: dc.descriptionSão Paulo State University Department of Computing-
Descrição: dc.descriptionSão Paulo State University Botucatu Medical School Nursing Department-
Descrição: dc.descriptionSão Paulo State University Department of Computing-
Idioma: dc.languageen-
Relação: dc.relationInternational Conference on Systems, Signals, and Image Processing-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectComplex Wounds-
Palavras-chave: dc.subjectComputer-aided Diagnosis-
Palavras-chave: dc.subjectDiabetic Ulcer-
Palavras-chave: dc.subjectPressure Ulcer-
Palavras-chave: dc.subjectVascular Ulcer-
Título: dc.titleComplexWoundDB: A Database for Automatic Complex Wound Tissue Categorization-
Tipo de arquivo: dc.typeaula digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.