Approximating quantum thermodynamic properties using DFT

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorUniversity of York-
Autor(es): dc.creatorZawadzki, K.-
Autor(es): dc.creatorSkelt, A. H.-
Autor(es): dc.creatorD'Amico, I.-
Data de aceite: dc.date.accessioned2025-08-21T17:18:37Z-
Data de disponibilização: dc.date.available2025-08-21T17:18:37Z-
Data de envio: dc.date.issued2023-03-01-
Data de envio: dc.date.issued2023-03-01-
Data de envio: dc.date.issued2022-07-06-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1088/1361-648X/ac6648-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/240968-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/240968-
Descrição: dc.descriptionThe fabrication, utilisation, and efficiency of quantum technology devices rely on a good understanding of quantum thermodynamic properties. Many-body systems are often used as hardware for these quantum devices, but interactions between particles make the complexity of related calculations grow exponentially with the system size. Here we explore and systematically compare 'simple' and 'hybrid' approximations to the average work and entropy variation built on static density functional theory concepts. These approximations are computationally cheap and could be applied to large systems. We exemplify them considering driven one-dimensional Hubbard chains and show that, for 'simple' approximations and low to medium temperatures, it pays to consider a good estimate of the Kohn-Sham Hamiltonian to approximate the driving Hamiltonian. Our results confirm that a 'hybrid' approach, requiring a very good approximation of the initial and, for the entropy, final states of the system, provides great improvements. This approach should be particularly efficient when many-body effects are not increased by the driving Hamiltonian.-
Descrição: dc.descriptionICTP South American Institute for Fundamental Research IFT-UNESP-
Descrição: dc.descriptionDepartment of Physics University of York-
Descrição: dc.descriptionICTP South American Institute for Fundamental Research IFT-UNESP-
Idioma: dc.languageen-
Relação: dc.relationJournal of Physics Condensed Matter-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectdensity functional theory-
Palavras-chave: dc.subjectHubbard chains-
Palavras-chave: dc.subjectquantum thermodynamics-
Título: dc.titleApproximating quantum thermodynamic properties using DFT-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.