Mass dimension one fermions: Constructing darkness

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorCenter for the Studies of the Glass Bead Game-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorSichuan University-
Autor(es): dc.contributorLanzhou University-
Autor(es): dc.contributorKosar University of Bojnord-
Autor(es): dc.creatorAhluwalia, Dharam Vir-
Autor(es): dc.creatorSilva, Julio M. Hoff da-
Autor(es): dc.creatorLee, Cheng-Yang-
Autor(es): dc.creatorLiu, Yu-Xiao-
Autor(es): dc.creatorPereira, Saulo H.-
Autor(es): dc.creatorSorkhi, Masoumeh Moazzen-
Data de aceite: dc.date.accessioned2025-08-21T16:25:57Z-
Data de disponibilização: dc.date.available2025-08-21T16:25:57Z-
Data de envio: dc.date.issued2023-03-01-
Data de envio: dc.date.issued2023-03-01-
Data de envio: dc.date.issued2022-07-12-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.physrep.2022.04.003-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/240964-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/240964-
Descrição: dc.descriptionLet Θ be the Wigner time reversal operator for spin half and let ϕ be a Weyl spinor. Then, for a left-transforming ϕ, the construct ζλΘϕ∗ yields a right-transforming spinor. If instead, ϕ is a right-transforming spinor, then the construct ζρΘϕ∗ results in a left-transforming spinor (ζλ,ρ are phase factors). This allows us to introduce two sets of four-component spinors. Setting ζλ and ζρ to ±i renders all eight spinors as eigenspinor of the charge conjugation operator C (called ELKO). This allows us to introduce two quantum fields. A calculation of the vacuum expectation value of the time-ordered product of the fields and their adjoints reveals the mass dimension of the fields to be one. Both fields are local in the canonical sense of quantum field theory. Interestingly, one of the fields is fermionic and the other bosonic. The mass dimension of the introduced fermionic fields and the matter fields of the Standard Model carry an intrinsic mismatch. As such, they provide natural darkness for the new fields with respect to the Standard Model doublets. The statistics and locality are controlled by a set of phases. These are explicitly given. Then we observe that in pμpμ= m2, Dirac took the simplest square root of the 4 × 4 identity matrix I (in I×m2, while introducing γμpμ as the square root of the left hand side of the dispersion relation), and as such he implicitly ignored the remaining fifteen. When we examine the remaining roots, we obtain additional bosonic and fermionic dark matter candidates of spin half. We point out that by early nineteen seventies, Dirac had suspected the existence of spin half bosons, in the same space as his fermions. This is interweaved with a detailed discussion of duals and adjoints. We study the fermionic self-interaction and interactions with a real scalar field. We show that a consistent interacting theory can be formulated using the ELKO adjoint up to one-loop thus circumventing the earlier problem of unitarity violation. We then undertake quantum field theoretic calculation that establishes the Newtonian gravitational interaction for a mass dimension one dark matter candidate. The report ends: (a) by studying the partition function and main thermodynamic properties of the mass dimension one fermionic field in the context of the dark matter halo of galaxies. For the Milky Way, the observational data of rotation curve fits quite well for a fermionic mass of about 23 eV; and (b) by introducing higher-dimensional ELKOs in braneworld scenario. After a brief introduction of some braneworld models, we review the localization of higher-dimensional ELKOs on flat and bent branes with appropriate localization mechanisms. We discuss the massless and massive Kaluza–Klein modes of ELKO fields on branes and give a comparison with other fields.-
Descrição: dc.descriptionNational Natural Science Foundation of China-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionHigher Education Discipline Innovation Project-
Descrição: dc.descriptionCenter for the Studies of the Glass Bead Game, Unit 29, 220 Normanby Road, Notting Hill-
Descrição: dc.descriptionDepartamento de Física Faculdade de Engenharia de Guaratinguetá Universidade Estadual Paulista UNESP, Av. Dr. Ariberto Pereira da Cunha-
Descrição: dc.descriptionCenter for Theoretical Physics College of Physical Science and Technology Sichuan University-
Descrição: dc.descriptionInstitute of Theoretical Physics and Lanzhou Center for Theoretical Physics School of Physical Sciences and Technology Lanzhou University-
Descrição: dc.descriptionDepartment of Physics Faculty of Basic Sciences Kosar University of Bojnord-
Descrição: dc.descriptionDepartamento de Física Faculdade de Engenharia de Guaratinguetá Universidade Estadual Paulista UNESP, Av. Dr. Ariberto Pereira da Cunha-
Descrição: dc.descriptionNational Natural Science Foundation of China: 11875151-
Descrição: dc.descriptionNational Natural Science Foundation of China: 12047501-
Descrição: dc.descriptionCNPq: 303561/2018-1-
Descrição: dc.descriptionCNPq: 303583/2018-5-
Descrição: dc.descriptionHigher Education Discipline Innovation Project: B20063-
Formato: dc.format1-43-
Idioma: dc.languageen-
Relação: dc.relationPhysics Reports-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectBrane-
Palavras-chave: dc.subjectDark energy-
Palavras-chave: dc.subjectDark matter-
Palavras-chave: dc.subjectELKO-
Palavras-chave: dc.subjectLocality and causality phases-
Palavras-chave: dc.subjectMass dimension one boson of spin half-
Palavras-chave: dc.subjectMass dimension one fermions of spin half-
Título: dc.titleMass dimension one fermions: Constructing darkness-
Tipo de arquivo: dc.typevídeo-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.