Degradation of commercial glyphosate-based herbicide via advanced oxidative processes in aqueous media and phytotoxicity evaluation using maize seeds

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorSilva, Victor E.C. da-
Autor(es): dc.creatorTadayozzi, Yasmin S.-
Autor(es): dc.creatorPutti, Fernando F.-
Autor(es): dc.creatorSantos, Felipe A.-
Autor(es): dc.creatorForti, Juliane C.-
Data de aceite: dc.date.accessioned2025-08-21T21:02:29Z-
Data de disponibilização: dc.date.available2025-08-21T21:02:29Z-
Data de envio: dc.date.issued2023-03-01-
Data de envio: dc.date.issued2023-03-01-
Data de envio: dc.date.issued2022-09-20-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.scitotenv.2022.156656-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/240275-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/240275-
Descrição: dc.descriptionGlyphosate is a herbicide that acts as a broad-spectrum, non-selective, post-emergence systemic pest controller. Its continuing, increasing, and excessive use in many countries in recent years poses a significant threat to the environment and human health due to the prevalence of this herbicide in water bodies and its impact on non-target organisms. In this context, it is essential to develop processes aimed at the non-selective degradation of glyphosate and its by-products. In this study, various advanced oxidative processes were applied: Fenton, electro-Fenton, photoelectro-oxidation, and photoelectro-Fenton, with the objective of oxidizing glyphosate in the commercial product Roundup®. The resultant oxidation products and the phytotoxicological effect on maize seed germination were also analyzed. Following each treatment, chemical oxygen demand (COD), total organic carbon (TOC), glyphosate degradation, and oxidation by-product formation were analyzed. The treated solutions were used to germinate maize seeds for 7 days in a germination chamber applying a photoperiod of 12 h at 24 °C. The % of germination, protein and hydrogen peroxide (H2O2) content, lipid peroxidation extent (MDA), and superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities were determined. The photoelectro-Fenton treatment was the most effective in degrading glyphosate, operating synergistically to break glyphosate bonds, thereby generating non-toxic short-chain molecules. Maize seed germination was satisfactory (> 50 %), but the persistent formation of reactive oxygen species (ROS) led to increased antioxidant activities of SOD, CAT, and POD enzymes acting in a compensatory manner against ROS, thus sustaining the photosynthetic apparatus. Hormesis, a stimulatory effect of glyphosate, was also observed in the presence of low concentrations of glyphosate.-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionSão Paulo State University (UNESP) School of Sciences and Engineering Biosystems Engineering Department, SP-
Descrição: dc.descriptionSão Paulo State University (UNESP) School of Sciences and Engineering Biosystems Engineering Department, SP-
Descrição: dc.descriptionFAPESP: 2016/22115-2-
Descrição: dc.descriptionFAPESP: 2019/20956-8-
Descrição: dc.descriptionCNPq: 402757/2016-5-
Idioma: dc.languageen-
Relação: dc.relationScience of the Total Environment-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectEcotoxicology-
Palavras-chave: dc.subjectElectro-oxidation-
Palavras-chave: dc.subjectFenton's reagent-
Palavras-chave: dc.subjectPhotocatalytic oxidation-
Palavras-chave: dc.subjectRoundup®-
Palavras-chave: dc.subjectWastewater treatment-
Título: dc.titleDegradation of commercial glyphosate-based herbicide via advanced oxidative processes in aqueous media and phytotoxicity evaluation using maize seeds-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.