A benchmark of denoising Digital Breast Tomosynthesis in projection domain: neural network-based and traditional methods

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorAraújo, Darlan M.N. de-
Autor(es): dc.creatorSalvadeo, Denis H.P.-
Autor(es): dc.creatorPaula, Davi D. de-
Data de aceite: dc.date.accessioned2025-08-21T15:58:02Z-
Data de disponibilização: dc.date.available2025-08-21T15:58:02Z-
Data de envio: dc.date.issued2023-03-01-
Data de envio: dc.date.issued2023-03-01-
Data de envio: dc.date.issued2021-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1117/12.2611833-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/240247-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/240247-
Descrição: dc.descriptionDigital Breast Tomosynthesis (DBT) projections are acquired with a high level of noise, compared to Digital Mammography (DM) projections. Noise reduction in DBT projections is important because the projections are obtained with low radiation dose, elevating the noise level. In this way, noise reduction is essential to improve the quality of DBT exam. Recently, neural network based methods have been applied to denoise DBT projections, reaching remarkable results. Some papers have been published showing that these methods are able to overpass traditional methods’ results, but we could not find a paper comparing the different types of networks to denoise DBT projections. In this paper, we proposed an experiment to compare neural network based methods, with different architecture types, and traditional methods. We performed a comparison among five traditional non-blind denoising methods and six neural network models. Considering both quantitative and qualitative analysis, we found that some neural network models achieve remarkable results, especially shallower models.-
Descrição: dc.descriptionSão Paulo State University (Unesp) Institute of Geosciences and Exact Sciences (IGCE), SP-
Descrição: dc.descriptionSão Paulo State University (Unesp) Institute of Geosciences and Exact Sciences (IGCE), SP-
Idioma: dc.languageen-
Relação: dc.relationProgress in Biomedical Optics and Imaging - Proceedings of SPIE-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectconvolutional neural networks-
Palavras-chave: dc.subjectdeep learning-
Palavras-chave: dc.subjectDenoising-
Palavras-chave: dc.subjectdigital breast tomosynthesis-
Título: dc.titleA benchmark of denoising Digital Breast Tomosynthesis in projection domain: neural network-based and traditional methods-
Tipo de arquivo: dc.typeaula digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.