Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Costa, Kelton Augusto Pontara da | - |
Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
Autor(es): dc.creator | Coutinho, Vinicius Machado | - |
Data de aceite: dc.date.accessioned | 2025-08-21T15:38:41Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T15:38:41Z | - |
Data de envio: dc.date.issued | 2023-01-29 | - |
Data de envio: dc.date.issued | 2023-01-29 | - |
Data de envio: dc.date.issued | 2023-01-17 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/11449/239096 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/239096 | - |
Descrição: dc.description | Com o avanço da Internet e o aumento de serviços digitais, tentativas de fraudes online, como o phishing, se tornaram um problema cada vez maior. Devido ao contínuo aumento e evolução desses ataques, há a necessidade do desenvolvimento e aprimoramento de métodos para detecção deles. Neste trabalho, foi criado um sistema de detecção de páginas de phishing, utilizando técnicas de aprendizado de máquina como Árvore de Decisão, Floresta Aleatória, Árvores Extremamente Aleatórias e XGBoost. Os modelos foram desenvolvidos com um conjunto de dados de 88.647 entradas e mediu-se suas efetividades através de métricas já estabelecidas na área de aprendizado de máquina. Os resultados obtidos foram promissores, com o modelo XGBoost apresentando o melhor resultado, mostrando-se eficaz para a detecção de páginas da internet falsas. | - |
Descrição: dc.description | With the advancement of the Internet and increase use of digital services, online fraud attempts, like phishing, has become an even bigger problem. Because of the ongoing increase and evolution of these attacks, there's a need to develop and improve the methods used to detect them. In this work, a system for detection of phishing pages was developed using machine learning techniques such as Decision Tree, Random Forest, Extremely Randomized Trees and XGBoost. The models were developed using a dataset with 88,647 entries and their effectiveness was measured using metrics already established in the machine learning field. The results were promising, with the XGBoost model presenting the best result, showing to be effective in detecting fake internet pages. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Publicador: dc.publisher | Universidade Estadual Paulista (UNESP) | - |
Direitos: dc.rights | info:eu-repo/semantics/openAccess | - |
Palavras-chave: dc.subject | Aprendizado de máquina | - |
Palavras-chave: dc.subject | Inteligência Artificial | - |
Palavras-chave: dc.subject | Fraude na Internet | - |
Palavras-chave: dc.subject | Árvores de decisão | - |
Palavras-chave: dc.subject | Machine learning | - |
Palavras-chave: dc.subject | Artificial intelligence | - |
Palavras-chave: dc.subject | Internet fraud | - |
Palavras-chave: dc.subject | Decision trees | - |
Título: dc.title | Detecção de páginas de phishing utilizando aprendizado de máquina | - |
Título: dc.title | Detection of phishing pages using machine learning. | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: