Damage Detection Approach for Bridges under Temperature Effects using Gaussian Process Regression Trained with Hybrid Data

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorLusofona Univ-
Autor(es): dc.contributorUniv Lisbon-
Autor(es): dc.creatorSilva, Samuel da-
Autor(es): dc.creatorFigueiredo, Eloi-
Autor(es): dc.creatorMoldovan, Ionut-
Data de aceite: dc.date.accessioned2025-08-21T18:07:41Z-
Data de disponibilização: dc.date.available2025-08-21T18:07:41Z-
Data de envio: dc.date.issued2022-11-29-
Data de envio: dc.date.issued2022-11-29-
Data de envio: dc.date.issued2022-10-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0001949-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/237866-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/237866-
Descrição: dc.descriptionThe success of detecting damage robustly relies on the availability of long periods of past data covering multiple weather scenarios and on the information contained in the data used during the learning process. Thus, the innovation of this paper is to apply a hybrid data set to train a Gaussian process regression, assuming a practically plausible range of environmental conditions. The proposed model presents a satisfactory performance to detect damage when structural changes caused by damage are blurred with changes caused by temperature. Rather than relying exclusively on experimental data, this strategy use finite-element models to generate complementary data when the structure is undamaged under a broad spectrum of temperature variations that are not measured. Once the stochastic interpolation is defined, the damage detection model is tested using experimental data considering different damage levels and temperature conditions. Induced settlements of a bridge pier are used as realistic damage scenarios. The Z24 prestressed concrete highway bridge in Switzerland is used to demonstrate the applicability of the proposed strategy. (c) 2022 American Society of Civil Engineers.-
Descrição: dc.descriptionKU Leuven (Belgium) Structural Mechanics Section as the Z24 Bridge data source-
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
Descrição: dc.descriptionPortuguese National Funding Agency for Science Research and Technology (FCT/Portugal)-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionUNESP Sao Paulo State Univ, Dept Mech Engn, Av Brasil 56, BR-15385000 Ilha Solteira, SP, Brazil-
Descrição: dc.descriptionLusofona Univ, Fac Engn, Campo Grande 376, P-1749024 Lisbon, Portugal-
Descrição: dc.descriptionUniv Lisbon, CERIS, Inst Super Tecn, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal-
Descrição: dc.descriptionUNESP Sao Paulo State Univ, Dept Mech Engn, Av Brasil 56, BR-15385000 Ilha Solteira, SP, Brazil-
Descrição: dc.descriptionCAPES: 001-
Descrição: dc.descriptionCNPq: 306526/2019-0-
Descrição: dc.descriptionFAPESP: 19/19684-3-
Descrição: dc.descriptionPortuguese National Funding Agency for Science Research and Technology (FCT/Portugal): UIDB/04625/2020-
Formato: dc.format12-
Idioma: dc.languageen-
Publicador: dc.publisherAsce-amer Soc Civil Engineers-
Relação: dc.relationJournal Of Bridge Engineering-
???dc.source???: dc.sourceWeb of Science-
Título: dc.titleDamage Detection Approach for Bridges under Temperature Effects using Gaussian Process Regression Trained with Hybrid Data-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.