Soybean rust detection and disease severity classification by remote sensing

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorNegrisoli, Matheus Mereb-
Autor(es): dc.creatorNegrisoli, RaphaelMereb-
Autor(es): dc.creatorSilva, FlavioNunes da-
Autor(es): dc.creatorLopes, Lucasda Silva-
Autor(es): dc.creatorSouza Junior, Franciscode Sales de-
Autor(es): dc.creatorVelini, Edivaldo Domingues-
Autor(es): dc.creatorCarbonari, Caio Antonio-
Autor(es): dc.creatorRodrigues, Sergio Augusto-
Autor(es): dc.creatorRaetano, Carlos Gilberto-
Data de aceite: dc.date.accessioned2025-08-21T22:15:26Z-
Data de disponibilização: dc.date.available2025-08-21T22:15:26Z-
Data de envio: dc.date.issued2022-11-29-
Data de envio: dc.date.issued2022-11-29-
Data de envio: dc.date.issued2022-09-15-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1002/agj2.21152-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/237864-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/237864-
Descrição: dc.descriptionThe detection and monitoring of soybean rust (SBR) through remote sensing is promising because of the importance of the crop and the aspects of the disease. We evaluated the effects of different levels of SBR severity on soybean [Glycine max (L.) Merr.] leaflets reflectance aiming for the construction of a disease classification model. Leaflet reflectance was evaluated on two cultivars (susceptible and partially resistant) at four disease severity levels: healthy, low, moderate, and high. Leaflets were collected in the field and taken to the laboratory for spectral evaluation through the spectrophotometer UV 2700 coupled with Integrating Sphere Attachment ISR-603, in the range of 270-1000 nm. The feasibility of using a collection of vegetation indices (VIs) and data dimensionality reduction through multiple factor analysis (MFA) was evaluated, and a classification model was constructed. Ten algorithms were assessed based on precision, sensibility, and accuracy parameters, using 80% of the dataset as training data and 20% as testing dataset. The visible range and red edge region contributed more significantly to the disease prediction and classification model. The MFA performed satisfactorily in the dimensionality reduction and unveiled the effect of specific wavelengths on the classification of each class. Most of the VIs studied had high correlation performance across the severity classes. Classification accuracy and precision were >70% for all models. Linear support vector machine with the collection of VIs achieved the best results. This study provides a practical path for developing a detection model to be integrated into SBR management programs.-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
Descrição: dc.descriptionSao Paulo State Univ, Dept Plant Protect, Sch Agr, Ave Univ, BR-3780 Botucatu, SP, Brazil-
Descrição: dc.descriptionSao Paulo State Univ, Dep Biotechnol & Bioproc, Sch Agr, Ave Univ, BR-3780 Botucatu, SP, Brazil-
Descrição: dc.descriptionSao Paulo State Univ, Dept Plant Protect, Sch Agr, Ave Univ, BR-3780 Botucatu, SP, Brazil-
Descrição: dc.descriptionSao Paulo State Univ, Dep Biotechnol & Bioproc, Sch Agr, Ave Univ, BR-3780 Botucatu, SP, Brazil-
Descrição: dc.descriptionFAPESP: 2018/26486-0-
Descrição: dc.descriptionFAPESP: 2018/24869-0-
Descrição: dc.descriptionCNPq: 142443/2018-2-
Descrição: dc.descriptionCAPES: 001-
Formato: dc.format17-
Idioma: dc.languageen-
Publicador: dc.publisherWiley-Blackwell-
Relação: dc.relationAgronomy Journal-
???dc.source???: dc.sourceWeb of Science-
Título: dc.titleSoybean rust detection and disease severity classification by remote sensing-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.