Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Garde, Ivan Aritz Aldaya | - |
Autor(es): dc.contributor | Oliveira, José Augusto de | - |
Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
Autor(es): dc.creator | Silva, Lucas Marim da | - |
Data de aceite: dc.date.accessioned | 2025-08-21T21:59:29Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T21:59:29Z | - |
Data de envio: dc.date.issued | 2022-06-29 | - |
Data de envio: dc.date.issued | 2022-06-29 | - |
Data de envio: dc.date.issued | 2022-06-01 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/11449/235414 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/235414 | - |
Descrição: dc.description | Neste trabalho são desenvolvidas técnicas para estimar a probabilidade de erro de bit (BER) em sistemas de comunicações ópticas digitais coerentes utilizando redes neurais convolucionais (CNNs). A estimativa é performada por meio do processamento histogramas de constelações de sinais por um algoritmo de regressão, capaz de generalizar a estimativa para redes ópticas passivas (PONs) com diferentes comprimentos de enlace e valores de potência de transmissão. Os resultados revelam que, utilizando uma CNN capaz de processar histogramas compostos por 10.000 símbolos e 64 bins, o erro entre o valor médio de BER estimado e esperado foi igual ou inferior a 10.87% para uma PON de 150 km considerando a faixa de valores de potência em que o sistema é limitado por modulação de fase não linear. O custo computacional necessário para realizar uma estimativa de BER utilizando a CNN descrita é de 195,61 x 10^6 operações de ponto flutuante. | - |
Descrição: dc.description | In this work, we developed techniques to estimate bit error ratio (BER) in digital coher- ent optical communications systems using convolutional neural networks (CNNs). The estimation is performed by processing histograms of constellations diagrams considering a regression algorithm capable of generalizing the estimation to different passive optical networks (PONs) configurations. Results reveal that a CNN trained to process histograms of 64 bins composed by 10,000 symbols presents an estimation error equal to or less than 10.87% considering a 150 km PON for launch optical power values over which the system is limited by non-linear phase modulation. The computational cost required to perform a BER estimation using the described CNN is 195.61 × 106 floating point operations. | - |
Descrição: dc.description | Não recebi financiamento | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Publicador: dc.publisher | Universidade Estadual Paulista (UNESP) | - |
Direitos: dc.rights | info:eu-repo/semantics/openAccess | - |
Palavras-chave: dc.subject | Comunicações ópticas | - |
Palavras-chave: dc.subject | Redes neurais (Computação) | - |
Palavras-chave: dc.subject | Telecomunicações | - |
Título: dc.title | Redes neurais convolucionais para predição de probabilidade de erro de bit em sistemas de comunicações ópticas coerentes digitais limitados por modulação de fase não linear | - |
Título: dc.title | Convolutional neural networks for bit error ratio prediction in digital coherent optical communication systems limited by non-linear phase modulation | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: