A necessary and sufficient condition for the stability of interval difference equation via interval Lyapunov equation

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorScience and Technology of São Paulo-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorUniversity of Colorado-
Autor(es): dc.contributorFederal University of Triângulo Mineiro-
Autor(es): dc.creatorCampos, José Renato-
Autor(es): dc.creatorAssunção, Edvaldo-
Autor(es): dc.creatorSilva, Geraldo Nunes-
Autor(es): dc.creatorLodwick, Weldon Alexander-
Autor(es): dc.creatorLeal, Ulcilea Alves Severino-
Data de aceite: dc.date.accessioned2025-08-21T22:55:28Z-
Data de disponibilização: dc.date.available2025-08-21T22:55:28Z-
Data de envio: dc.date.issued2022-05-01-
Data de envio: dc.date.issued2022-05-01-
Data de envio: dc.date.issued2021-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1007/s00500-022-06958-4-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/234331-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/234331-
Descrição: dc.descriptionInterval difference equations can be used for modeling biological, economic, or physical systems that, due to lack of information or measurement errors in the input data from real-world applications, contain uncertainties. These types of systems are usually called uncertain systems. The stability analysis of those systems is of particular interest among the various properties of the uncertain systems. In this paper, we propose a necessary and sufficient condition for the stability of linear interval difference equation using single-level constrained interval arithmetic. The interval Lyapunov matrix equation is developed coupled with the interval Sylvester criterion. The stability analysis of the interval difference equation proposed here, using constrained interval arithmetic, is, to a certain degree, similar to the case in crisp environment. This similarity is of great advantage for the treatment of systems with uncertainty. We illustrate the application of the stability theory developed here with a variety of examples.-
Descrição: dc.descriptionArea of Sciences Federal Institute of Education Science and Technology of São Paulo, SP-
Descrição: dc.descriptionSchool of Engineering São Paulo State University (UNESP), SP-
Descrição: dc.descriptionInstitute of Biosciences Humanities and Exact Sciences São Paulo State University (UNESP), SP-
Descrição: dc.descriptionDepartment of Mathematical and Statistical Sciences University of Colorado-
Descrição: dc.descriptionDepartment of Mathematical Federal University of Triângulo Mineiro, MG-
Descrição: dc.descriptionSchool of Engineering São Paulo State University (UNESP), SP-
Descrição: dc.descriptionInstitute of Biosciences Humanities and Exact Sciences São Paulo State University (UNESP), SP-
Idioma: dc.languageen-
Relação: dc.relationSoft Computing-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectInterval difference equation-
Palavras-chave: dc.subjectInterval Lyapunov equation-
Palavras-chave: dc.subjectInterval stability-
Palavras-chave: dc.subjectInterval Sylvester criterion-
Palavras-chave: dc.subjectSingle-level constrained interval arithmetic-
Título: dc.titleA necessary and sufficient condition for the stability of interval difference equation via interval Lyapunov equation-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.