FakeRecogna: A New Brazilian Corpus for Fake News Detection

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorGarcia, Gabriel L.-
Autor(es): dc.creatorAfonso, Luis C. S.-
Autor(es): dc.creatorPapa, João P.-
Data de aceite: dc.date.accessioned2025-08-21T22:20:25Z-
Data de disponibilização: dc.date.available2025-08-21T22:20:25Z-
Data de envio: dc.date.issued2022-05-01-
Data de envio: dc.date.issued2022-05-01-
Data de envio: dc.date.issued2021-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1007/978-3-030-98305-5_6-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/234317-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/234317-
Descrição: dc.descriptionFake news has become a research topic of great importance in Natural Language Processing due to its negative impact on our society. Although its pertinence, there are few datasets available in Brazilian Portuguese and mostly comprise few samples. Therefore, this paper proposes creating a new fake news dataset named FakeRecogna that contains a greater number of samples, more up-to-date news, and covering a few of the most important categories. We perform a toy evaluation over the created dataset using traditional classifiers such as Naive Bayes, Optimum-Path Forest, and Support Vector Machines. A Convolutional Neural Network is also evaluated in the context of fake news detection in the proposed dataset.-
Descrição: dc.descriptionSchool of Sciences São Paulo State University-
Descrição: dc.descriptionSchool of Sciences São Paulo State University-
Formato: dc.format57-67-
Idioma: dc.languageen-
Relação: dc.relationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectCorpus-
Palavras-chave: dc.subjectFake news-
Palavras-chave: dc.subjectPortuguese-
Título: dc.titleFakeRecogna: A New Brazilian Corpus for Fake News Detection-
Tipo de arquivo: dc.typeaula digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.