
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
| Autor(es): dc.creator | Ribeiro, Luiz Carlos Felix | - |
| Autor(es): dc.creator | Roder, Mateus | - |
| Autor(es): dc.creator | de Rosa, Gustavo H. | - |
| Autor(es): dc.creator | Passos, Leandro A. | - |
| Autor(es): dc.creator | Papa, João P. | - |
| Data de aceite: dc.date.accessioned | 2025-08-21T18:50:43Z | - |
| Data de disponibilização: dc.date.available | 2025-08-21T18:50:43Z | - |
| Data de envio: dc.date.issued | 2022-05-01 | - |
| Data de envio: dc.date.issued | 2022-05-01 | - |
| Data de envio: dc.date.issued | 2020-12-31 | - |
| Fonte completa do material: dc.identifier | http://dx.doi.org/10.1007/978-3-030-93420-0_11 | - |
| Fonte completa do material: dc.identifier | http://hdl.handle.net/11449/234120 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/234120 | - |
| Descrição: dc.description | The continuous computational power growth in the last decades has made solving several optimization problems significant to humankind a tractable task; however, tackling some of them remains a challenge due to the overwhelming amount of candidate solutions to be evaluated, even by using sophisticated algorithms. In such a context, a set of nature-inspired stochastic methods, called meta-heuristic optimization, can provide robust approximate solutions to different kinds of problems with a small computational burden, such as derivative-free real function optimization. Nevertheless, these methods may converge to inadequate solutions if the function landscape is too harsh, e.g., enclosing too many local optima. Previous works addressed this issue by employing a hypercomplex representation of the search space, like quaternions, where the landscape becomes smoother and supposedly easier to optimize. Under this approach, meta-heuristic computations happen in the hypercomplex space, whereas variables are mapped back to the real domain before function evaluation. Despite this latter operation being performed by the Euclidean norm, we have found that after the optimization procedure has finished, it is usually possible to obtain even better solutions by employing the Minkowski p-norm instead and fine-tuning p through an auxiliary sub-problem with neglecting additional cost and no hyperparameters. Such behavior was observed in eight well-established benchmarking functions, thus fostering a new research direction for hypercomplex meta-heuristic optimization. | - |
| Descrição: dc.description | Department of Computing São Paulo State University | - |
| Descrição: dc.description | Department of Computing São Paulo State University | - |
| Formato: dc.format | 109-118 | - |
| Idioma: dc.language | en | - |
| Relação: dc.relation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | - |
| ???dc.source???: dc.source | Scopus | - |
| Palavras-chave: dc.subject | Benchmarking functions | - |
| Palavras-chave: dc.subject | Euclidean norm | - |
| Palavras-chave: dc.subject | Hypercomplex space | - |
| Palavras-chave: dc.subject | Meta-heuristic optimization | - |
| Palavras-chave: dc.subject | Real-valued projection | - |
| Título: dc.title | Enhancing Hyper-to-Real Space Projections Through Euclidean Norm Meta-heuristic Optimization | - |
| Tipo de arquivo: dc.type | aula digital | - |
| Aparece nas coleções: | Repositório Institucional - Unesp | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: