Wavelet Transform Applied to Coffee Entomology

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade de São Paulo (USP)-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorInstituto Federal de São Paulo-
Autor(es): dc.creatorLemos Escola, Joao Paulo-
Autor(es): dc.creatorDa Silva, Ivan Nunes-
Autor(es): dc.creatorGuido, Rodrigo Capobianco-
Autor(es): dc.creatorFonseca, Everthon Silva-
Data de aceite: dc.date.accessioned2025-08-21T23:31:53Z-
Data de disponibilização: dc.date.available2025-08-21T23:31:53Z-
Data de envio: dc.date.issued2022-05-01-
Data de envio: dc.date.issued2022-05-01-
Data de envio: dc.date.issued2020-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1109/SPSympo51155.2020.9593404-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/234042-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/234042-
Descrição: dc.descriptionIn this work, the design and development of a computational algorithm to assist in the management of insect pests in coffee plantations are presented, particularly for detecting the presence of cicadas. Acoustic signals, previously captured, are submitted to the proposed system which reads the raw data, converts them to the wavelet domain and groups them together based on the Bark Scale. Then, Paraconsistent Characteristics Analysis, appearing as a technique recently presented in the scientific literature and which had not yet been used for this purpose, serves as a basis for selecting the best filter banks so that they can be later delivered to a Support Vector Machine (SVM), responsible for the final step of signal identification. The accuracy of 100% was achieved in most of the 3600 tests performed, proving the viability of the implemented strategy, which has become minimally complex due to the optimization provided by the paraconsistent methodology. Finally, a prototype in the scope of Internet of Things is described to serve as a possibility of implantation in the field.-
Descrição: dc.descriptionEscola de Engenharia de São Carlos Universidade de São Paulo São, Carlos, SP-
Descrição: dc.descriptionUniversidade Estadual Paulista, S. J. do Rio Preto SP-
Descrição: dc.descriptionInstituto Federal de São Paulo, Catanduva SP-
Descrição: dc.descriptionUniversidade Estadual Paulista, S. J. do Rio Preto SP-
Formato: dc.format58-64-
Idioma: dc.languageen-
Relação: dc.relation2021 Signal Processing Symposium, SPSympo 2021-
???dc.source???: dc.sourceScopus-
Título: dc.titleWavelet Transform Applied to Coffee Entomology-
Tipo de arquivo: dc.typeaula digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.