
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
| Autor(es): dc.creator | Privatto, Pedro Ivo Monteiro | - |
| Autor(es): dc.creator | Guilherme, Ivan Rizzo | - |
| Data de aceite: dc.date.accessioned | 2025-08-21T16:42:47Z | - |
| Data de disponibilização: dc.date.available | 2025-08-21T16:42:47Z | - |
| Data de envio: dc.date.issued | 2022-05-01 | - |
| Data de envio: dc.date.issued | 2022-05-01 | - |
| Data de envio: dc.date.issued | 2020-12-31 | - |
| Fonte completa do material: dc.identifier | http://dx.doi.org/10.1007/978-3-030-91699-2_42 | - |
| Fonte completa do material: dc.identifier | http://hdl.handle.net/11449/233938 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/233938 | - |
| Descrição: dc.description | In the different areas of knowledge, textual data are important sources of information. This way, Information Extraction methods have been developed to identify and structure information present in textual documents. In particular there is the Named Entity Recognition (NER) task, which consists of using methods to identify Named Entities, such as Person, Place, among others, in texts, using techniques from Natural Language Processing and Machine Learning. Recent works explored the use of external sources of knowledge to boost the Machine Learning models with sets of domain specific relevant information for the NER task. This work aims to evaluate the aggregation of external knowledge, in the form of Gazetter and Knowledge Graphs, for NER task. Our approach is composed of two steps: i) generation of embeddings, ii) definition and training of the Machine Learning methods. The experiments were conducted on four English datasets, and their results show that the applied strategies for external knowledge integration did not bring great gains to the models, as expressed by F1-Score metric. In the performed experiments, there was an F1-score increase in 17 of the 32 cases where external knowledge was used, but in most cases the gains were lesser than 0.5% in F1-score. In some scenarios the aggregated external knowledge does not capture relevant content, thus not being necessarily beneficial to the methodology. | - |
| Descrição: dc.description | Institute of Geosciences and Exact Sciences UNESP - São Paulo State University, SP | - |
| Descrição: dc.description | Institute of Geosciences and Exact Sciences UNESP - São Paulo State University, SP | - |
| Formato: dc.format | 616-627 | - |
| Idioma: dc.language | en | - |
| Relação: dc.relation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | - |
| ???dc.source???: dc.source | Scopus | - |
| Palavras-chave: dc.subject | Information extraction | - |
| Palavras-chave: dc.subject | Knowledge embeddings | - |
| Palavras-chave: dc.subject | Named entity recognition | - |
| Título: dc.title | When External Knowledge Does Not Aggregate in Named Entity Recognition | - |
| Tipo de arquivo: dc.type | aula digital | - |
| Aparece nas coleções: | Repositório Institucional - Unesp | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: