Invariant probabilities for discrete time linear dynamics via thermodynamic formalism

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorIME-UFRGS-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorUniversidade Federal do Rio de Janeiro (UFRJ)-
Autor(es): dc.creatorLopes, Artur O.-
Autor(es): dc.creatorMessaoudi, Ali-
Autor(es): dc.creatorStadlbauer, Manuel-
Autor(es): dc.creatorVargas, Victor-
Data de aceite: dc.date.accessioned2025-08-21T23:25:10Z-
Data de disponibilização: dc.date.available2025-08-21T23:25:10Z-
Data de envio: dc.date.issued2022-05-01-
Data de envio: dc.date.issued2022-05-01-
Data de envio: dc.date.issued2021-11-30-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1088/1361-6544/ac3382-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/233873-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/233873-
Descrição: dc.descriptionWe show the existence of invariant ergodic σ-additive probability measures with full support on X for a class of linear operators L : X → X, where L is a weighted shift operator and X either is the Banach space c0(ℝ) or lp(ℝ) for 1 p < ∞. In order to do so, we adapt ideas from thermodynamic formalism as follows. For a given bounded Hölder continuous potential A:X → R, we define a transfer operator LA which acts on continuous functions on X and prove that this operator satisfies a Ruelle-Perron-Frobenius theorem. That is, we show the existence of an eigenfunction for LA which provides us with a normalised potential A and an action of the dual operator LA∗ on the one-Wasserstein space of probabilities on X with a unique fixed point, to which we refer to as Gibbs probability. It is worth noting that the definition of LA requires an a priori probability on the kernel of L. These results are extended to a wide class of operators with a non-trivial kernel defined on separable Banach spaces.-
Descrição: dc.descriptionIME-UFRGS-
Descrição: dc.descriptionMAT-UNESP-
Descrição: dc.descriptionIM-UFRJ-
Descrição: dc.descriptionMAT-UNESP-
Formato: dc.format8359-8391-
Idioma: dc.languageen-
Relação: dc.relationNonlinearity-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectdiscrete time linear dynamics-
Palavras-chave: dc.subjecteigenprobability-
Palavras-chave: dc.subjectequilibrium state-
Palavras-chave: dc.subjectGibbs probability-
Palavras-chave: dc.subjectlp spaces-
Palavras-chave: dc.subjectRuelle theorem-
Título: dc.titleInvariant probabilities for discrete time linear dynamics via thermodynamic formalism-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.