Nature-inspired optimum-path forest

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorAfonso, Luis Claudio Sugi-
Autor(es): dc.creatorRodrigues, Douglas-
Autor(es): dc.creatorPapa, João Paulo-
Data de aceite: dc.date.accessioned2025-08-21T20:55:28Z-
Data de disponibilização: dc.date.available2025-08-21T20:55:28Z-
Data de envio: dc.date.issued2022-05-01-
Data de envio: dc.date.issued2022-05-01-
Data de envio: dc.date.issued2020-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1007/s12065-021-00664-0-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/233469-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/233469-
Descrição: dc.descriptionThe Optimum-Path Forest (OPF) is a graph-based classifier that models pattern recognition problems as a graph partitioning task. The OPF learning process is performed in a competitive fashion where a few key samples (i.e., prototypes) try to conquer the remaining training samples to build optimum-path trees (OPT). The task of selecting prototypes is paramount to obtain high-quality OPTs, thus being of great importance to the classifier. The most used approach computes a minimum spanning tree over the training set and promotes the samples nearby the decision boundary as prototypes. Although such methodology has obtained promising results in the past year, it can be prone to overfitting. In this work, it is proposed a metaheuristic-based approach (OPFmh) for the selection of prototypes, being such a task modeled as an optimization problem whose goal is to improve accuracy. The experimental results showed the OPFmh can reduce overfitting, as well as the number of prototypes in many situations. Moreover, OPFmh achieved competitive accuracies and outperformed OPF in the experimental scenarios.-
Descrição: dc.descriptionSchool of Sciences UNESP - São Paulo State University-
Descrição: dc.descriptionSchool of Sciences UNESP - São Paulo State University-
Idioma: dc.languageen-
Relação: dc.relationEvolutionary Intelligence-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectMeta-heuristics-
Palavras-chave: dc.subjectOptimum-Path Forest-
Palavras-chave: dc.subjectPattern Classification-
Título: dc.titleNature-inspired optimum-path forest-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.