Pixelwise Time Series Retrieval in Phenological Studies

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual de Campinas (UNICAMP)-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorSantos, Elisangela Silva-
Autor(es): dc.creatorAlberton, Bruna-
Autor(es): dc.creatorMorellato, Leonor Patrícia Cerdeira-
Autor(es): dc.creatorDa Silva Torres, Ricardo-
Data de aceite: dc.date.accessioned2025-08-21T22:57:50Z-
Data de disponibilização: dc.date.available2025-08-21T22:57:50Z-
Data de envio: dc.date.issued2022-04-30-
Data de envio: dc.date.issued2022-04-30-
Data de envio: dc.date.issued2019-07-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1109/IGARSS.2019.8898112-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/232954-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/232954-
Descrição: dc.descriptionThe support of time series similarity searches might be crucial in phenology studies, in which long-term time series analysis based on the identification of similar and different phenological patterns shared by individuals belonging to different species is a widely common task. In this paper, we introduce the use of well-established Information Retrieval (IR) technologies in the search of time series. The solution comprises four main steps: extraction of an image-based time series representation; image content description to encode time series properties and patterns; textual signature extraction based on image content descriptions; and textual signature indexing using off-the-shelf IR approaches. In this paper, we demonstrate both the effectiveness and the efficiency of the proposed solution in time series retrieval problems related to the management of phenological data associated with near-surface vegetation images.-
Descrição: dc.descriptionUniversity of Campinas Institute of Computing-
Descrição: dc.descriptionUniversidade Estadual Paulista-
Descrição: dc.descriptionUniversidade Estadual Paulista-
Formato: dc.format6586-6589-
Idioma: dc.languageen-
Relação: dc.relationInternational Geoscience and Remote Sensing Symposium (IGARSS)-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectinformation retrieval-
Palavras-chave: dc.subjectphenology-
Palavras-chave: dc.subjectrecurrence plot-
Palavras-chave: dc.subjecttime series retrieval-
Título: dc.titlePixelwise Time Series Retrieval in Phenological Studies-
Tipo de arquivo: dc.typeaula digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.