Phishing Detection Using URL-based XAI Techniques

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorFatec Ourinhos-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorHernandes, Paulo R. Galego-
Autor(es): dc.creatorFloret, Camila P.-
Autor(es): dc.creatorDe Almeida, Katia F. Cardozo-
Autor(es): dc.creatorDa Silva, Vinicius Camargo-
Autor(es): dc.creatorPapa, Joso Paulo-
Autor(es): dc.creatorDa Costa, Kelton A. Pontara-
Data de aceite: dc.date.accessioned2025-08-21T15:44:50Z-
Data de disponibilização: dc.date.available2025-08-21T15:44:50Z-
Data de envio: dc.date.issued2022-04-29-
Data de envio: dc.date.issued2022-04-29-
Data de envio: dc.date.issued2020-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1109/SSCI50451.2021.9659981-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/231630-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/231630-
Descrição: dc.descriptionThe Internet has been growing exponentially and expanding facilities, such as payments and online purchases. Likewise, the number of criminals using electronic devices to commit theft or hijacking of information has increased. Many scams still require interaction with the victim, who in many cases is persuaded to access a malicious link sent by email, which is classified as phishing. This technique is one of the biggest threats for users and one of the most efficient for criminals. Several studies show different sorts of protection using Artificial Intelligence, which despite being very efficient, do not describe the reasons for categorizing them or using a URL as phishing. This paper focuses on detecting phishing using explainable techniques, i.e., Local Interpretable Model-Agnostic Explanations and Explainable Boosting Machine, to lighten up new advances and future works in the area.-
Descrição: dc.descriptionFatec Ourinhos Department of Information Security-
Descrição: dc.descriptionSão Paulo State University Department of Computing-
Descrição: dc.descriptionSão Paulo State University Department of Computing-
Idioma: dc.languageen-
Relação: dc.relation2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Proceedings-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectArtificial intelligence-
Palavras-chave: dc.subjectExplainable-
Palavras-chave: dc.subjectMachine learning-
Palavras-chave: dc.subjectPhishing-
Palavras-chave: dc.subjectXAI-
Título: dc.titlePhishing Detection Using URL-based XAI Techniques-
Tipo de arquivo: dc.typeaula digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.