Thermodynamic analysis of biomedical waste plasma gasification

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorUniversidade Federal do ABC (UFABC)-
Autor(es): dc.creatorPaulino, Regina Franciélle Silva-
Autor(es): dc.creatorEssiptchouk, Alexei Mikhailovich-
Autor(es): dc.creatorCosta, Lucas Pamplona Cardozo-
Autor(es): dc.creatorSilveira, José Luz-
Data de aceite: dc.date.accessioned2025-08-21T15:52:07Z-
Data de disponibilização: dc.date.available2025-08-21T15:52:07Z-
Data de envio: dc.date.issued2022-04-29-
Data de envio: dc.date.issued2022-04-29-
Data de envio: dc.date.issued2022-04-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.energy.2021.122600-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/229928-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/229928-
Descrição: dc.descriptionPlasma gasification technology is one of the environmentally correct techniques that can be applied in the processing of biomedical waste (BW). This work aims to present thermodynamic studies with a simulation of the plasma gasification of BW produced in Brazil. Through thermodynamic analysis is determined the best operating point of the reactor, which corresponds to the temperature where the energy yield of syngas is maximum, and consequently the syngas chemical composition and its lower heating value (LHV). Finally, it is estimated the electrical power required in the BW processing and the potential for electricity generation through the burning of syngas in an internal combustion engine (ICE) and gas turbine set (GTS), and the capacity to supply the necessary energy in the plasma gasifier. As conclusion, the best operating point for the processing of typical Brazilian BW is at a temperature of 1040 K with a maximum gas energy yield of 2.25. For this temperature the syngas consists of 63.65 wt% of carbon monoxide and 5.35 wt% of hydrogen and LHV of 13.47 MJ/kg. Finally, for processing 1 kg/s of BW are required 6292 kW of electrical power, and the maximum electricity production potential is 3132 kW in ICE and 3758 kW in GTS.-
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
Descrição: dc.descriptionLaboratory of Optimization of Energy Systems (LOSE) Department of Energy School of Engineering and Institute of Bioenergy Research (IPBEN-UNESP)-Associated Laboratory of Guaratinguetá Sao Paulo State University (UNESP)-
Descrição: dc.descriptionWaste Revaluation Center Federal University of ABC (UFABC)-
Descrição: dc.descriptionDepartment of Environmental Engineering Institute of Science and Technology Sao Paulo State University (UNESP)-
Descrição: dc.descriptionLaboratory of Optimization of Energy Systems (LOSE) Department of Energy School of Engineering and Institute of Bioenergy Research (IPBEN-UNESP)-Associated Laboratory of Guaratinguetá Sao Paulo State University (UNESP)-
Descrição: dc.descriptionDepartment of Environmental Engineering Institute of Science and Technology Sao Paulo State University (UNESP)-
Descrição: dc.descriptionCAPES: 001-
Idioma: dc.languageen-
Relação: dc.relationEnergy-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectBiomedical waste-
Palavras-chave: dc.subjectElectricity-
Palavras-chave: dc.subjectPlasma gasification-
Palavras-chave: dc.subjectSyngas-
Palavras-chave: dc.subjectThermodynamic analysis-
Título: dc.titleThermodynamic analysis of biomedical waste plasma gasification-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.