Experimental and artificial neural network approach for prediction of the thermal degradation behavior of sugarcane-based vulcanization additives in natural rubber compounds

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorSENAI Institute of Innovation in Polymer Engineering-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorUniversidade Federal de Pelotas-
Autor(es): dc.contributorUniversidade Federal do ABC (UFABC)-
Autor(es): dc.contributorUniversidade Federal da Integração da América Latina (UNILA)-
Autor(es): dc.creatorZanchet, Aline-
Autor(es): dc.creatorMonticeli, Francisco Maciel-
Autor(es): dc.creatorde Sousa, Fabiula Danielli Bastos-
Autor(es): dc.creatorOrnaghi, Heitor Luiz-
Data de aceite: dc.date.accessioned2025-08-21T19:36:31Z-
Data de disponibilização: dc.date.available2025-08-21T19:36:31Z-
Data de envio: dc.date.issued2022-04-29-
Data de envio: dc.date.issued2022-04-29-
Data de envio: dc.date.issued2021-11-30-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.clet.2021.100303-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/229800-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/229800-
Descrição: dc.descriptionThe use of natural additives in elastomeric compounds is gaining the special attention of researchers and industry due to their potential applications as environmentally friendly compounds and lower cost-related. Another important issue is the use of powerful mathematical tools to predict experimental results, which is crucial for saving cost and time. Artificial neural network (ANN) combined with other mathematical methods, such as surface response methodology (SRM), can guarantee reliability and faster response of the predicted data for similar materials or properties. The great advantage of the present method is the fast prediction of the analyzed property, in the present case, thermal degradation curves, at heating rates not experimentally tested. In this study, a modified activator from sugarcane bagasse was incorporated in different concentrations in natural rubber compounds, and the degradation behavior was simulated by ANN and SRM based on the experimental thermal degradation curves at different heating rates from the thermogravimetric analysis. The simulated results showed an outstanding agreement with the experimental ones, evidencing the importance of using ANN and SRM tools in the prediction of properties of elastomeric compounds.-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionSENAI Institute of Innovation in Polymer Engineering, Av. Pres. João Goulart, 682-
Descrição: dc.descriptionDepartment of Materials and Technology Universidade Estadual Júlio de Mesquita Filho, Rua Dr. Ariberto Pereira da Cunha, 333, Guaratinguetá-
Descrição: dc.descriptionTechnology Development Center Universidade Federal de Pelotas, Rua Gomes Carneiro, 1-
Descrição: dc.descriptionCenter of Engineering Modeling and Applied Social Science Universidade Federal do ABC, Avenida dos Estados, 5001-
Descrição: dc.descriptionUniversidade Federal da Integração da América Latina (UNILA), Avenida Silvio Américo Sasdelli, 1842-
Descrição: dc.descriptionDepartment of Materials and Technology Universidade Estadual Júlio de Mesquita Filho, Rua Dr. Ariberto Pereira da Cunha, 333, Guaratinguetá-
Descrição: dc.descriptionFAPESP: 2012/14844–3-
Idioma: dc.languageen-
Relação: dc.relationCleaner Engineering and Technology-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectArtificial neural network-
Palavras-chave: dc.subjectGreen additive-
Palavras-chave: dc.subjectNatural rubber-
Palavras-chave: dc.subjectSugarcane-
Palavras-chave: dc.subjectThermal degradation-
Título: dc.titleExperimental and artificial neural network approach for prediction of the thermal degradation behavior of sugarcane-based vulcanization additives in natural rubber compounds-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.