Anisotropic electrical conductivity of magnetized hot quark matter

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Federal de Santa Maria-
Autor(es): dc.contributorSouth China Normal University-
Autor(es): dc.contributorIndian Institute of Technology Bhilai-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorBandyopadhyay, Aritra-
Autor(es): dc.creatorGhosh, Sabyasachi-
Autor(es): dc.creatorFarias, Ricardo L. S.-
Autor(es): dc.creatorDey, Jayanta-
Autor(es): dc.creatorKrein, Gastao-
Data de aceite: dc.date.accessioned2025-08-21T23:35:23Z-
Data de disponibilização: dc.date.available2025-08-21T23:35:23Z-
Data de envio: dc.date.issued2022-04-29-
Data de envio: dc.date.issued2022-04-29-
Data de envio: dc.date.issued2020-12-07-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1103/PhysRevD.102.114015-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/228905-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/228905-
Descrição: dc.descriptionWe studied the effect of a strong magnetic field (B) on the electrical conductivity of hot quark matter. The electrical conductivity is a key transport coefficient determining the time dependence and strength of magnetic fields generated in a relativistic heavy-ion collision. A magnetic field induces Hall anisotropic conduction, phase-space Landau-level quantization and, if sufficiently strong, interferes with prominent QCD phenomena such as dynamical quark mass generation, likely affecting the quark matter electrical conductivity, which depends strongly on the quark masses. To address these issues, we used a quasiparticle description of quark matter in which the electric charge carriers are constituent quarks with temperature- and magnetic-field-dependent masses predicted by a Nambu-Jona-Lasinio model. The model accurately describes recent lattice QCD results showing magnetic catalysis at low temperatures and inverse magnetic catalysis at temperatures close to the pseudocritical temperature (Tpc) of the QCD phase transition. We found that the magnetic field increases the conductivity component parallel to it and decreases the transverse component, in qualitative agreement with recent lattice QCD results. In addition, we found that (1) the space anisotropy of the conductivity increases with B, (2) the longitudinal conductivity increases due to phase-space Landau-level quantization, (3) a lowest Landau level approximation behaves poorly for temperatures close to Tpc, and (5) inverse magnetic catalysis leaves a distinctive signal in all components of the conductivity, a prominent peak at Tpc. Our study adds to the existing body of work on the hot quark matter electrical conductivity by incorporating nontrivial temperature and magnetic field effects on dynamical mass generation. Our results are useful both for studies employing magnetohydrodynamics simulations of heavy-ion collisions and for getting insight on lattice QCD results.-
Descrição: dc.descriptionDepartamento de Fisica Universidade Federal de Santa Maria-
Descrição: dc.descriptionGuangdong Provincial Key Laboratory of Nuclear Science Institute of Quantum Matter South China Normal University-
Descrição: dc.descriptionIndian Institute of Technology Bhilai, GEC Campus, Sejbahar-
Descrição: dc.descriptionInstituto de Fisica Teorica Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz, 271 - Bloco II-
Descrição: dc.descriptionInstituto de Fisica Teorica Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz, 271 - Bloco II-
Idioma: dc.languageen-
Relação: dc.relationPhysical Review D-
???dc.source???: dc.sourceScopus-
Título: dc.titleAnisotropic electrical conductivity of magnetized hot quark matter-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.