Constructions and decoding of a sequence of BCH codes

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorShah, Taxiq-
Autor(es): dc.creatorQamar, Attiq-
Autor(es): dc.creatorDe Andrade, Antonio Aparecido-
Data de aceite: dc.date.accessioned2025-08-21T17:34:17Z-
Data de disponibilização: dc.date.available2025-08-21T17:34:17Z-
Data de envio: dc.date.issued2022-04-29-
Data de envio: dc.date.issued2022-04-29-
Data de envio: dc.date.issued2012-01-01-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/227210-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/227210-
Descrição: dc.descriptionThe BCH code C (respectively, C) of length n over a local ring Z pk (respectively, ℤp) is an ideal in the ring (Equation Presented) (respectively, (Equation Presented) which is generated by a monic polynomial that divides Xn - 1. Shankar [12] has shown that the roots of Xn - 1 are the unit elements of a suitable Galois ring extension GR(pk,s) (respectively, Galois field extension GF(p, s)) of the ring ℤpk (respectively, ℤp), where s is the degree of basic irreducible polynomial f(X) ∈ ℤpk [X]. In this study we assume that for st = bi, where 6 is prime and t is a non negative integer such that 0 ≤ i ≤ t, there exist corresponding chain of Galois ring extensions GR(pk, s,) (respectively, a chain of Galois field extensions GF(p, s,)) of ℤpk (respectively, ℤp), there are two situations; st = bi for i = 2 or st = bi for i ≥ 2. Consequently, the case is alike [12] and we obtain a sequence of BCH codes C0,C1, ···, Ct-1, C over ℤpk and C′0,C′1,···, C′t-1,C′ over ℤp with lengths n 0,n1,···, nt-1,n t. In second phase we extend the Modified Berlekamp-Massey Algorithm for the chain of Galois rings in such a way that the error will be corrected of the sequence of codewords from the sequence of BCH codes C0,C 1, ···, Ct-1,C. © Global Publishing Company.-
Descrição: dc.descriptionDepartment of Mathematics, Quaid-i-Azam University, Islamabad-
Descrição: dc.descriptionDepartment of Mathematics, São Paulo State University, São José do Rio Preto - SP-
Descrição: dc.descriptionDepartment of Mathematics, São Paulo State University, São José do Rio Preto - SP-
Formato: dc.format234-250-
Idioma: dc.languageen-
Relação: dc.relationMathematical Sciences Research Journal-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectBCH code-
Palavras-chave: dc.subjectDecoding-
Palavras-chave: dc.subjectEncoding-
Palavras-chave: dc.subjectGalois field-
Palavras-chave: dc.subjectGalois ring-
Palavras-chave: dc.subjectModified Berlekamp-Massey Algorithm-
Título: dc.titleConstructions and decoding of a sequence of BCH codes-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.