Stickiness in a bouncer model: A slowing mechanism for Fermi acceleration

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade de São Paulo (USP)-
Autor(es): dc.contributorUTFPR Campus Pato Branco-
Autor(es): dc.contributorUniversity of Bristol-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorICTP-
Autor(es): dc.creatorLivorati, André L. P.-
Autor(es): dc.creatorKroetz, Tiago-
Autor(es): dc.creatorDettmann, Carl P.-
Autor(es): dc.creatorCaldas, Iberê Luiz-
Autor(es): dc.creatorLeonel, Edson D.-
Data de aceite: dc.date.accessioned2025-08-21T20:59:10Z-
Data de disponibilização: dc.date.available2025-08-21T20:59:10Z-
Data de envio: dc.date.issued2022-04-29-
Data de envio: dc.date.issued2022-04-29-
Data de envio: dc.date.issued2012-09-06-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1103/PhysRevE.86.036203-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/226969-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/226969-
Descrição: dc.descriptionSome phase space transport properties for a conservative bouncer model are studied. The dynamics of the model is described by using a two-dimensional measure preserving mapping for the variables' velocity and time. The system is characterized by a control parameter ε and experiences a transition from integrable (ε=0) to nonintegrable (ε0). For small values of ε, the phase space shows a mixed structure where periodic islands, chaotic seas, and invariant tori coexist. As the parameter ε increases and reaches a critical value ε c, all invariant tori are destroyed and the chaotic sea spreads over the phase space, leading the particle to diffuse in velocity and experience Fermi acceleration (unlimited energy growth). During the dynamics the particle can be temporarily trapped near periodic and stable regions. We use the finite time Lyapunov exponent to visualize this effect. The survival probability was used to obtain some of the transport properties in the phase space. For large ε, the survival probability decays exponentially when it turns into a slower decay as the control parameter ε is reduced. The slower decay is related to trapping dynamics, slowing the Fermi Acceleration, i.e., unbounded growth of the velocity. © 2012 American Physical Society.-
Descrição: dc.descriptionInstituto de Física IFUSP Universidade de São Paulo, USP Rua do Matão, Tr. R 187, 05314-970, São Paulo, SP-
Descrição: dc.descriptionDepartamento de Física Universidade Tecnológica Federal Do Paraná UTFPR Campus Pato Branco, 85503-390, Pato Branco, PR-
Descrição: dc.descriptionSchool of Mathematics University of Bristol, Bristol BS8 1TW-
Descrição: dc.descriptionDepartamento de Estatística Matemática Aplicada e Computação UNESP Univ Estadual Paulista, Av. 24A, 1515 Bela Vista, 13506-900, Rio Claro, SP-
Descrição: dc.descriptionAbdus Salam ICTP, 34151 Trieste-
Descrição: dc.descriptionDepartamento de Estatística Matemática Aplicada e Computação UNESP Univ Estadual Paulista, Av. 24A, 1515 Bela Vista, 13506-900, Rio Claro, SP-
Idioma: dc.languageen-
Relação: dc.relationPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics-
???dc.source???: dc.sourceScopus-
Título: dc.titleStickiness in a bouncer model: A slowing mechanism for Fermi acceleration-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.