On the dynamics behavior and a control design to a nonlinear 2-DOF vibrating gyroscopic-MEMS model

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorPeruzzi, Nelson José-
Autor(es): dc.creatorChavarette, Fábio Roberto-
Autor(es): dc.creatorBalthazar, José Manoel-
Data de aceite: dc.date.accessioned2025-08-21T18:31:17Z-
Data de disponibilização: dc.date.available2025-08-21T18:31:17Z-
Data de envio: dc.date.issued2022-04-29-
Data de envio: dc.date.issued2022-04-29-
Data de envio: dc.date.issued2011-12-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1115/DETC2011-47391-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/226886-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/226886-
Descrição: dc.descriptionIn this paper, we deal with the nonlinear dynamics, the transfer of energy and control of the vibrations of a Micro Electro-mechanical System (MEMS) gyroscope. The MEMS are micro-transducers whose operation is based on elastic and electrostatic forces that convert electrical energy into mechanical energy and vice-versa. These systems can be modeled by 2-DOF spring-mass-damper system and the coupling of the system equations is performed by Coriolis force. This coupling is responsible for the energy transfers of the two vibration modes (drive-mode and sense-mode) and for the resonance in MEMS gyroscope. The governing equations of motion have periodic coefficients and as the dimensions of the quantities involved in the system may be inconsistent it is not advisable the use of perturbation methods for the solution of the MEMS gyroscope. For this reason, in the dynamic analysis and control of the vibrations of the MEMS gyroscope, we used a technique based on Chebyshev polynomial expansion, the iterative Picard and transformation of Lyapunov-Floquet (L - F). For the analysis of the dynamic of the micro electro-mechanical system gyroscope, we did the diagram of stability, phase planes and time history of transfer of energy. Finally, we did the control of the unstable orbit to a desired periodic one and compared the phase planes of orbits desired and controlled and time histories of energy transfer of the controlled and non-controlled system. Copyright © 2011 by ASME.-
Descrição: dc.descriptionUNESP - Estadual Paulista University Department of Exact Sciences, Via de Acesso Prof.Paulo Donato Castellane s/n, 14884-900 Jaboticabal - SP-
Descrição: dc.descriptionUNESP - Estadual Paulista University Faculty of Engineering Department of Mathematics, Avenida Brasil, 56, 15385-000, Ilha Solteira, SP-
Descrição: dc.descriptionUNESP - Estadual Paulista University Department of Statistics, Applied Mathematics and Computation, PO Box 178, 13500-230 Rio Claro, SP-
Descrição: dc.descriptionUNESP - Estadual Paulista University Department of Exact Sciences, Via de Acesso Prof.Paulo Donato Castellane s/n, 14884-900 Jaboticabal - SP-
Descrição: dc.descriptionUNESP - Estadual Paulista University Faculty of Engineering Department of Mathematics, Avenida Brasil, 56, 15385-000, Ilha Solteira, SP-
Descrição: dc.descriptionUNESP - Estadual Paulista University Department of Statistics, Applied Mathematics and Computation, PO Box 178, 13500-230 Rio Claro, SP-
Formato: dc.format437-446-
Idioma: dc.languageen-
Relação: dc.relationProceedings of the ASME Design Engineering Technical Conference-
???dc.source???: dc.sourceScopus-
Título: dc.titleOn the dynamics behavior and a control design to a nonlinear 2-DOF vibrating gyroscopic-MEMS model-
Tipo de arquivo: dc.typeaula digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.