Structural health evaluation by optimization techinique and artificial neural network

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorLopes Jr., Vicente-
Autor(es): dc.creatorTurra, Antônio E.-
Autor(es): dc.creatorMüller-Slany, Hans Heinrich-
Autor(es): dc.creatorBrunzel, Frank-
Autor(es): dc.creatorInman, Daniel J.-
Data de aceite: dc.date.accessioned2025-08-21T21:25:18Z-
Data de disponibilização: dc.date.available2025-08-21T21:25:18Z-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2002-01-01-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/224260-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/224260-
Descrição: dc.descriptionThis paper presents two different approaches to detect, locate, and characterize structural damage. Both techniques utilize electrical impedance in a first stage to locate the damaged area. In the second stage, to quantify the damage severity, one can use neural network, or optimization technique. The electrical impedance-based, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations, this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors, and therefore, it is able to detect the damage in its early stage. Optimization approaches must be used for the case where a good condensed model is known, while neural network can be also used to estimate the nature of damage without prior knowledge of the model of the structure. The paper concludes with an experimental example in a welded cubic aluminum structure, in order to verify the performance of these two proposed methodologies.-
Descrição: dc.descriptionDepartment of Mechanical Engineering UNESP, 13385-000 Ilha Solteira SP-
Descrição: dc.descriptionDepartment of Mechanical Engineering UNESP, 13385-000 Ilha Solteira SP-
Formato: dc.format484-490-
Idioma: dc.languageen-
Relação: dc.relationProceedings of SPIE - The International Society for Optical Engineering-
???dc.source???: dc.sourceScopus-
Título: dc.titleStructural health evaluation by optimization techinique and artificial neural network-
Tipo de arquivo: dc.typeaula digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.