Hybrid Stochastic/Information Gap Decision Theory Model for Optimal Energy Management of Grid-Connected Microgrids with Uncertainties in Renewable Energy Generation and Demand

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorZandrazavi, Seyed Farhad-
Autor(es): dc.creatorPozos, Alejandra Tabares-
Autor(es): dc.creatorFranco, John Fredy-
Data de aceite: dc.date.accessioned2025-08-21T17:30:22Z-
Data de disponibilização: dc.date.available2025-08-21T17:30:22Z-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2020-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584585-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/223657-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/223657-
Descrição: dc.descriptionMicrogrids (MGs) are considered a reliable solution for the integration of a high level of intermittent distributed energy resources. However, renewable energy generation has added complexity to the optimal energy management of MGs (OEMMs) due to its high degree of uncertainty. As a result, the development of efficient models for handling these uncertainties is essential. As a result, a hybrid stochastic/information gap decision theory (IGDT) based model is proposed for the OEMMs. For that purpose, firstly, a two-stage stochastic mixed-integer second-order conic programming model is presented by producing scenarios for the power generated by wind turbine and photovoltaic units. Then, the proposed model has become robust against active and reactive power demand uncertainties by the deployment of IGDT. Both stochastic and hybrid Stochastic/IGDT models are implemented in AMPL and they are solved by using the commercial solver CPLEX. Moreover, the power flow equations are included to guarantee the validity of the proposed models for real-world applications. A modified IEEE 33-bus test system with a high level of renewable energy integration is utilized as a test system. The results show that the hybrid stochastic/IGDT model can efficiently cope with the uncertainties associated with renewable energy generation and electric demand.-
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionDepartment of Electrical Engineering São Paulo State University-
Descrição: dc.descriptionSchool of Energy Engineering São Paulo State University-
Descrição: dc.descriptionDepartment of Electrical Engineering São Paulo State University-
Descrição: dc.descriptionSchool of Energy Engineering São Paulo State University-
Descrição: dc.descriptionFAPESP: 2015/21972-6-
Descrição: dc.descriptionFAPESP: 2017/02831-8-
Descrição: dc.descriptionFAPESP: 2018/20990-9-
Idioma: dc.languageen-
Relação: dc.relation21st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC / I and CPS Europe 2021 - Proceedings-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectInformation gap theory-
Palavras-chave: dc.subjectmicrogrid-
Palavras-chave: dc.subjectrenewable energy-
Palavras-chave: dc.subjectrobust optimization-
Palavras-chave: dc.subjectstochastic programming-
Título: dc.titleHybrid Stochastic/Information Gap Decision Theory Model for Optimal Energy Management of Grid-Connected Microgrids with Uncertainties in Renewable Energy Generation and Demand-
Tipo de arquivo: dc.typeaula digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.