Using Aggregated Electrical Loads for the Multinodal Load Forecasting

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorMoreira-Júnior, Joaquim R.-
Autor(es): dc.creatorAbreu, Thays-
Autor(es): dc.creatorMinussi, Carlos R.-
Autor(es): dc.creatorLopes, Mara L. M.-
Data de aceite: dc.date.accessioned2025-08-21T19:22:55Z-
Data de disponibilização: dc.date.available2025-08-21T19:22:55Z-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2021-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1007/s40313-022-00906-1-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/223594-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/223594-
Descrição: dc.descriptionForecasting electrical loads is essential from a practical and economic point of view. With this forecast, it is possible to plan the supply of energy safely and continuously, and without interruption. In the literature, most of the works that perform electric load forecasting consider the global demand, that is, the sum of the total energy consumption. This work proposes to carry out the load forecasting along with the buses of a distribution system (multinodal forecasting) based on the use of the load aggregation concept. The proposed method uses a Fuzzy-ARTMAP neural network to forecast electrical loads in substations (multinodal forecasting) 24 h ahead, with the main objective of studying and identifying possible aggregations of multinodal loads, aiming at improving the multinodal load forecasting. The database used was from an electricity distribution subsystem, consisting of nine substations.-
Descrição: dc.descriptionUNESP–São Paulo State University Câmpus de Ilha Solteira, Av. Brasil, 56-
Descrição: dc.descriptionUNESP–São Paulo State University Câmpus de Ilha Solteira, Av. Brasil, 56-
Idioma: dc.languageen-
Relação: dc.relationJournal of Control, Automation and Electrical Systems-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectAdaptive resonance theory-
Palavras-chave: dc.subjectAggregate electric loads-
Palavras-chave: dc.subjectArtificial neural network-
Palavras-chave: dc.subjectElectrical system distribution-
Palavras-chave: dc.subjectMultinodal load forecasting-
Título: dc.titleUsing Aggregated Electrical Loads for the Multinodal Load Forecasting-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.