Solving the sample size problem for resource selection functions

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorMississippi State University-
Autor(es): dc.contributorUiversity of Sheffield-
Autor(es): dc.contributorSwansea University-
Autor(es): dc.contributorUniversity of Georgia-
Autor(es): dc.contributorUniversity of Guelph-
Autor(es): dc.contributorUniversity of Saskatchewan-
Autor(es): dc.contributorUniversity of Wyoming-
Autor(es): dc.contributorMemorial University of Newfoundland-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorOntario Ministry of Natural Resources and Forestry-
Autor(es): dc.contributorAarhus University-
Autor(es): dc.contributorIUCN/SSC Peccary Specialist Group-
Autor(es): dc.creatorStreet, Garrett M.-
Autor(es): dc.creatorPotts, Jonathan R.-
Autor(es): dc.creatorBörger, Luca-
Autor(es): dc.creatorBeasley, James C.-
Autor(es): dc.creatorDemarais, Stephen-
Autor(es): dc.creatorFryxell, John M.-
Autor(es): dc.creatorMcLoughlin, Philip D.-
Autor(es): dc.creatorMonteith, Kevin L.-
Autor(es): dc.creatorProkopenko, Christina M.-
Autor(es): dc.creatorRibeiro, Miltinho C. [UNESP]-
Autor(es): dc.creatorRodgers, Arthur R.-
Autor(es): dc.creatorStrickland, Bronson K.-
Autor(es): dc.creatorvan Beest, Floris M.-
Autor(es): dc.creatorBernasconi, David A.-
Autor(es): dc.creatorBeumer, Larissa T.-
Autor(es): dc.creatorDharmarajan, Guha-
Autor(es): dc.creatorDwinnell, Samantha P.-
Autor(es): dc.creatorKeiter, David A.-
Autor(es): dc.creatorKeuroghlian, Alexine-
Autor(es): dc.creatorNewediuk, Levi J.-
Autor(es): dc.creatorOshima, Júlia Emi F. [UNESP]-
Autor(es): dc.creatorRhodes, Olin-
Autor(es): dc.creatorSchlichting, Peter E.-
Autor(es): dc.creatorSchmidt, Niels M.-
Autor(es): dc.creatorVander Wal, Eric-
Data de aceite: dc.date.accessioned2022-08-04T22:12:03Z-
Data de disponibilização: dc.date.available2022-08-04T22:12:03Z-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2020-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1111/2041-210X.13701-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/222300-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/222300-
Descrição: dc.descriptionSample size sufficiency is a critical consideration for estimating resource selection functions (RSFs) from GPS-based animal telemetry. Cited thresholds for sufficiency include a number of captured animals (Formula presented.) and as many relocations per animal N as possible. These thresholds render many RSF-based studies misleading if large sample sizes were truly insufficient, or unpublishable if small sample sizes were sufficient but failed to meet reviewer expectations. We provide the first comprehensive solution for RSF sample size by deriving closed-form mathematical expressions for the number of animals M and the number of relocations per animal N required for model outputs to a given degree of precision. The sample sizes needed depend on just 3 biologically meaningful quantities: habitat selection strength, variation in individual selection and a novel measure of landscape complexity, which we define rigorously. The mathematical expressions are calculable for any environmental dataset at any spatial scale and are applicable to any study involving resource selection (including sessile organisms). We validate our analytical solutions using globally relevant empirical data including 5,678,623 GPS locations from 511 animals from 10 species (omnivores, carnivores and herbivores living in boreal, temperate and tropical forests, montane woodlands, swamps and Arctic tundra). Our analytic expressions show that the required M and N must decline with increasing selection strength and increasing landscape complexity, and this decline is insensitive to the definition of availability used in the analysis. Our results demonstrate that the most biologically relevant effects on the utilization distribution (i.e. those landscape conditions with the greatest absolute magnitude of resource selection) can often be estimated with much fewer than (Formula presented.) animals. We identify several critical steps in implementing these equations, including (a) a priori selection of expected model coefficients and (b) regular sampling of background (pseudoabsence) data within a given definition of availability. We discuss possible methods to identify a priori expectations for habitat selection coefficients, effects of scale on RSF estimation and caveats for rare species applications. We argue that these equations should be a mandatory component for all future RSF studies.-
Descrição: dc.descriptionDepartment of Wildlife Fisheries and Aquaculture Mississippi State University-
Descrição: dc.descriptionQuantitative Ecology and Spatial Technologies Laboratory Mississippi State University-
Descrição: dc.descriptionSchool of Mathematics and Statistics Uiversity of Sheffield-
Descrição: dc.descriptionDepartment of Biosciences Swansea University-
Descrição: dc.descriptionCentre for Biomathematics Swansea University-
Descrição: dc.descriptionSavannah River Ecology Laboratory University of Georgia-
Descrição: dc.descriptionDepartment of Integrative Biology University of Guelph-
Descrição: dc.descriptionDepartment of Biology University of Saskatchewan-
Descrição: dc.descriptionHaub School of Environment and Natural Resources University of Wyoming-
Descrição: dc.descriptionDepartment of Biology Memorial University of Newfoundland-
Descrição: dc.descriptionInstituto de Biosciências Universidad Estadual Paulista-
Descrição: dc.descriptionCentre for Northern Forest Ecosystem Research Ontario Ministry of Natural Resources and Forestry-
Descrição: dc.descriptionDepartment of Bioscience Aarhus University-
Descrição: dc.descriptionWyoming Cooperative Fish and Wildlife Research Unit University of Wyoming-
Descrição: dc.descriptionIUCN/SSC Peccary Specialist Group-
Descrição: dc.descriptionInstituto de Biosciências Universidad Estadual Paulista-
Idioma: dc.languageen-
Relação: dc.relationMethods in Ecology and Evolution-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectbootstrap-
Palavras-chave: dc.subjecthabitat selection-
Palavras-chave: dc.subjectp-value-
Palavras-chave: dc.subjectpower analysis-
Palavras-chave: dc.subjectresource selection function-
Palavras-chave: dc.subjectsample size-
Palavras-chave: dc.subjectspecies distribution model-
Palavras-chave: dc.subjectvalidation-
Título: dc.titleSolving the sample size problem for resource selection functions-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.