Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Federal University for Latin American Integration (UNILA) | - |
Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
Autor(es): dc.contributor | Federal University of Rio Grande do Sul (UFRGS) | - |
Autor(es): dc.contributor | University of Caxias do Sul (UCS) | - |
Autor(es): dc.creator | Ornaghi, Heitor Luiz | - |
Autor(es): dc.creator | Monticeli, Francisco M [UNESP] | - |
Autor(es): dc.creator | Neves, Roberta Motta | - |
Autor(es): dc.creator | Zattera, Ademir José | - |
Autor(es): dc.creator | Amico, Sandro Campos | - |
Data de aceite: dc.date.accessioned | 2022-08-04T22:11:45Z | - |
Data de disponibilização: dc.date.available | 2022-08-04T22:11:45Z | - |
Data de envio: dc.date.issued | 2022-04-28 | - |
Data de envio: dc.date.issued | 2022-04-28 | - |
Data de envio: dc.date.issued | 2020-12-31 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.1177/09673911211037829 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/11449/222195 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/222195 | - |
Descrição: dc.description | The dynamic mechanical behavior (storage modulus, loss modulus, and tan δ) of hybrid sisal/glass composites was investigated in the temperature range of 30–210 °C, for two different volume percentages of reinforcement along with the different ratios of sisal and glass fibers. Based on the experimental outcome, an artificial neural network (ANN) approach was used to predict the dynamic mechanical properties followed by a surface response methodology (SRM). The ANN analysis showed an excellent fit with the storage modulus, loss modulus, and tan δ experimental data. In addition, the fitted curves with the ANN approach were used to propose equations based on SRM. The simulation result has shown that the ANN is a potential mathematical tool for the structure–property correlation for polymer composites and may help researchers in the development and application of their data, reducing the need for long experimental campaigns. | - |
Descrição: dc.description | Federal University for Latin American Integration (UNILA) | - |
Descrição: dc.description | Department of Materials and Technology School of Engineering São Paulo State University (Unesp) | - |
Descrição: dc.description | Postgraduate Program in Mining Metallurgical and Materials Engineering (PPGE3M) Federal University of Rio Grande do Sul (UFRGS) | - |
Descrição: dc.description | Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC) University of Caxias do Sul (UCS) | - |
Descrição: dc.description | Department of Materials and Technology School of Engineering São Paulo State University (Unesp) | - |
Idioma: dc.language | en | - |
Relação: dc.relation | Polymers and Polymer Composites | - |
???dc.source???: dc.source | Scopus | - |
Palavras-chave: dc.subject | artificial neural network | - |
Palavras-chave: dc.subject | Hybrid composite | - |
Palavras-chave: dc.subject | statistical properties/methods | - |
Palavras-chave: dc.subject | thermo-mechanical properties | - |
Palavras-chave: dc.subject | thermosetting resin | - |
Título: dc.title | Experimental and artificial neural network approach for prediction of dynamic mechanical behavior of sisal/glass hybrid composites | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: