Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | University of Brasilia | - |
Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
Autor(es): dc.contributor | University of New South Wales | - |
Autor(es): dc.creator | de Sá, Jáder M.C. | - |
Autor(es): dc.creator | Rossi, Andre L.D. [UNESP] | - |
Autor(es): dc.creator | Batista, Gustavo E.A.P.A. | - |
Autor(es): dc.creator | Garcia, Luís P.F. | - |
Data de aceite: dc.date.accessioned | 2022-08-04T22:10:27Z | - |
Data de disponibilização: dc.date.available | 2022-08-04T22:10:27Z | - |
Data de envio: dc.date.issued | 2022-04-28 | - |
Data de envio: dc.date.issued | 2022-04-28 | - |
Data de envio: dc.date.issued | 2019-12-31 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.1109/ICPR48806.2021.9411923 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/11449/221976 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/221976 | - |
Descrição: dc.description | In the last decades, many companies have taken advantage of knowledge discovery to identify valuable information in massive volumes of data generated at high frequency. Machine learning techniques can be employed for knowledge discovery since they can extract patterns from data and induce models to predict future events. However, dynamic and evolving environments usually generate non-stationary data streams. Hence, models trained in these scenarios may perish over time due to seasonality or concept drift. Periodic retraining can help, but a fixed hypothesis space may no longer be appropriate. An alternative solution is to use meta-learning for regular algorithm selection in time-changing environments, choosing the bias that best suits the current data. In this paper, we present an enhanced framework for data stream algorithm selection based on MetaStream. Our approach uses meta-learning and incremental learning to actively select the best algorithm for the current concept in a time-changing environment. Different from previous work, we use a rich set of state-of-the-art meta-features, and an incremental learning approach in the meta-level based on LightGBM. The results show that this new strategy can improve the recommendation accuracy of the best algorithm in time-changing data. | - |
Descrição: dc.description | Fundação de Apoio à Pesquisa do Distrito Federal | - |
Descrição: dc.description | Department of Computer Science University of Brasilia | - |
Descrição: dc.description | São Paulo State University (UNESP), SP | - |
Descrição: dc.description | School of Computer Science and Engineering University of New South Wales | - |
Descrição: dc.description | São Paulo State University (UNESP), SP | - |
Formato: dc.format | 6073-6080 | - |
Idioma: dc.language | en | - |
Relação: dc.relation | Proceedings - International Conference on Pattern Recognition | - |
???dc.source???: dc.source | Scopus | - |
Título: dc.title | Algorithm recommendation for data streams | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: