Laplacian coordinates: Theory and methods for seeded image segmentation

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorUniversidade Federal do ABC (UFABC)-
Autor(es): dc.contributorBrown University-
Autor(es): dc.contributorUniversidade de São Paulo (USP)-
Autor(es): dc.creatorCasaca, Wallace [UNESP]-
Autor(es): dc.creatorGois, Joao Paulo-
Autor(es): dc.creatorBatagelo, Harlen Costa-
Autor(es): dc.creatorTaubin, Gabriel-
Autor(es): dc.creatorNonato, Luis Gustavo-
Data de aceite: dc.date.accessioned2022-08-04T22:09:35Z-
Data de disponibilização: dc.date.available2022-08-04T22:09:35Z-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2021-08-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1109/TPAMI.2020.2974475-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/221720-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/221720-
Descrição: dc.descriptionSeeded segmentation methods have gained a lot of attention due to their good performance in fragmenting complex images, easy usability and synergism with graph-based representations. These methods usually rely on sophisticated computational tools whose performance strongly depends on how good the training data reflect a sought image pattern. Moreover, poor adherence to the image contours, lack of unique solution, and high computational cost are other common issues present in most seeded segmentation methods. In this work we introduce Laplacian Coordinates, a quadratic energy minimization framework that tackles the issues above in an effective and mathematically sound manner. The proposed formulation builds upon graph Laplacian operators, quadratic energy functions, and fast minimization schemes to produce highly accurate segmentations. Moreover, the presented energy functions are not prone to local minima, i.e., the solution is guaranteed to be globally optimal, a trait not present in most image segmentation methods. Another key property is that the minimization procedure leads to a constrained sparse linear system of equations, enabling the segmentation of high-resolution images at interactive rates. The effectiveness of Laplacian Coordinates is attested by a comprehensive set of comparisons involving nine state-of-the-art methods and several benchmarks extensively used in the image segmentation literature.-
Descrição: dc.descriptionDepartment of Energy Engineering São Paulo State University (UNESP)-
Descrição: dc.descriptionCenter for Mathematics Computing and Cognition Federal University of ABC (UFABC)-
Descrição: dc.descriptionSchool of Engineering Brown University-
Descrição: dc.descriptionICMC University of São Paulo (USP)-
Descrição: dc.descriptionDepartment of Energy Engineering São Paulo State University (UNESP)-
Formato: dc.format2665-2681-
Idioma: dc.languageen-
Relação: dc.relationIEEE Transactions on Pattern Analysis and Machine Intelligence-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectenergy minimization models-
Palavras-chave: dc.subjectgraph laplacian-
Palavras-chave: dc.subjectlaplacian coordinates-
Palavras-chave: dc.subjectSeeded image segmentation-
Título: dc.titleLaplacian coordinates: Theory and methods for seeded image segmentation-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.