Faster α-expansion via dynamic programming and image partitioning

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Federal da Bahia (UFBA)-
Autor(es): dc.contributorVORTEX-CoLab-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorFontinele, Jefferson-
Autor(es): dc.creatorMendonca, Marcelo-
Autor(es): dc.creatorRuiz, Marco-
Autor(es): dc.creatorPapa, Joao [UNESP]-
Autor(es): dc.creatorOliveira, Luciano-
Data de aceite: dc.date.accessioned2022-08-04T22:09:04Z-
Data de disponibilização: dc.date.available2022-08-04T22:09:04Z-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2020-07-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1109/IJCNN48605.2020.9207032-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/221592-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/221592-
Descrição: dc.descriptionImage segmentation is the task of assigning a label to each image pixel. When the number of labels is greater than two (multi-label) the segmentation can be modelled as a multi-cut problem in graphs. In the general case, finding the minimum cut in a graph is an NP-hard problem, in which improving the results concerning time and quality is a major challenge. This paper addresses the multi-label problem applied in interactive image segmentation. The proposed approach makes use of dynamic programming to initialize an α-expansion, thus reducing its runtime, while keeping the Dice-score measure in an interactive segmentation task. Over BSDS data set, the proposed algorithm was approximately 51.2% faster than its standard counterpart, 36.2% faster than Fast Primal-Dual (FastPD) and 10.5 times faster than quadratic pseudo-boolean optimization (QBPO) optimizers, while preserving the same segmentation quality.-
Descrição: dc.descriptionFederal University of Bahia Intelligent Vision Research Lab-
Descrição: dc.descriptionVORTEX-CoLab-
Descrição: dc.descriptionSão Paulo State University-
Descrição: dc.descriptionSão Paulo State University-
Idioma: dc.languageen-
Relação: dc.relationProceedings of the International Joint Conference on Neural Networks-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectdynamic programming-
Palavras-chave: dc.subjectimage segmentation-
Palavras-chave: dc.subjectmulti-label-
Palavras-chave: dc.subjectα-expansion-
Título: dc.titleFaster α-expansion via dynamic programming and image partitioning-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.