Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
Autor(es): dc.creator | Passerini, Jefferson Antonio Ribeiro [UNESP] | - |
Autor(es): dc.creator | Breve, Fabricio [UNESP] | - |
Data de aceite: dc.date.accessioned | 2022-08-04T22:09:03Z | - |
Data de disponibilização: dc.date.available | 2022-08-04T22:09:03Z | - |
Data de envio: dc.date.issued | 2022-04-28 | - |
Data de envio: dc.date.issued | 2022-04-28 | - |
Data de envio: dc.date.issued | 2019-12-31 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.1007/978-3-030-58799-4_67 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/11449/221587 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/221587 | - |
Descrição: dc.description | In the interactive image segmentation task, the Particle Competition and Cooperation (PCC) model is fed with a complex network, which is built from the input image. In the network construction phase, a weight vector is needed to define the importance of each element in the feature set, which consists of color and location information of the corresponding pixels, thus demanding a specialist’s intervention. The present paper proposes the elimination of the weight vector through modifications in the network construction phase. The proposed model and the reference model, without the use of a weight vector, were compared using 151 images extracted from the Grabcut dataset, the PASCAL VOC dataset and the Alpha matting dataset. Each model was applied 30 times to each image to obtain an error average. These simulations resulted in an error rate of only 0.49% when classifying pixels with the proposed model while the reference model had an error rate of 3.14%. The proposed method also presented less error variation in the diversity of the evaluated images, when compared to the reference model. | - |
Descrição: dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
Descrição: dc.description | São Paulo State University | - |
Descrição: dc.description | São Paulo State University | - |
Descrição: dc.description | FAPESP: #2016/05669-4 | - |
Formato: dc.format | 935-950 | - |
Idioma: dc.language | en | - |
Relação: dc.relation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | - |
???dc.source???: dc.source | Scopus | - |
Palavras-chave: dc.subject | Interactive image segmentation | - |
Palavras-chave: dc.subject | Machine learning | - |
Palavras-chave: dc.subject | Particle competition and cooperation | - |
Palavras-chave: dc.subject | Semi-supervised learning | - |
Título: dc.title | Complex Network Construction for Interactive Image Segmentation Using Particle Competition and Cooperation: A New Approach | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: