Plant species identification using color learning resources, shape, texture, through machine learning and artificial neural networks

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Federal de Mato Grosso do Sul (UFMS)-
Autor(es): dc.contributorUniversity of Brasília (UnB)-
Autor(es): dc.contributorCatholic University Dom Bosco-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorMato Grosso do Sul State University-
Autor(es): dc.contributorUnB-
Autor(es): dc.contributorEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA)-
Autor(es): dc.contributorFederal University of Mato Grosso-
Autor(es): dc.creatorBambil, Deborah-
Autor(es): dc.creatorPistori, Hemerson-
Autor(es): dc.creatorBao, Francielli [UNESP]-
Autor(es): dc.creatorWeber, Vanessa-
Autor(es): dc.creatorAlves, Flávio Macedo-
Autor(es): dc.creatorGonçalves, Eduardo Gomes-
Autor(es): dc.creatorde Alencar Figueiredo, Lúcio Flávio-
Autor(es): dc.creatorAbreu, Urbano G. P.-
Autor(es): dc.creatorArruda, Rafael-
Autor(es): dc.creatorBortolotto, Ieda Maria-
Data de aceite: dc.date.accessioned2022-08-04T22:08:36Z-
Data de disponibilização: dc.date.available2022-08-04T22:08:36Z-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2020-11-30-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1007/s10669-020-09769-w-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/221461-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/221461-
Descrição: dc.descriptionMorphological characteristics are still the most used tools for the identification of plant species. In this context, leaves are the most available plant organ used, given their perenniality and diversity. Computer-based image analysis help extract morphological features for botanical identification and maybe a solution to taxonomic problems requiring extensively trained specialists that use visual identification as the primary method for this approach. In this study, were collected 40 leaves from 30 trees and shrub species from 19 different families. Here, we compared two popular image capture devices: a scanner and a mobile phone. Features analyzed comprised color, shape, and texture. The performance of both devices was compared through three machine learning algorithms (adaptive boosting—AdaBoost, random forest, support vector machine—SVM) and an artificial neural network model (deep learning). Computer vision showed to be efficient in the identification of species (higher than 93%), with similar results obtained for both mobile phones and scanners. The algorithms SVM, random forest and deep learning performed more efficiently than AdaBoost. Based on the results, we present the Inovtaxon Plant Species Identification Software, available at https://github.com/DeborahBambil/Inovtaxon.-
Descrição: dc.descriptionFundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul-
Descrição: dc.descriptionDepartment of Plant Biology Federal University of Mato Grosso do Sul (UFMS)-
Descrição: dc.descriptionDepartment of Cell Biology University of Brasília (UnB)-
Descrição: dc.descriptionCatholic University Dom Bosco-
Descrição: dc.descriptionBioscience Institute São Paulo State University-
Descrição: dc.descriptionDirectory of Informatics Mato Grosso do Sul State University-
Descrição: dc.descriptionDepartment of Botany UnB-
Descrição: dc.descriptionEmbrapa Pantanal-
Descrição: dc.descriptionFederal University of Mato Grosso-
Descrição: dc.descriptionBioscience Institute São Paulo State University-
Formato: dc.format480-484-
Idioma: dc.languageen-
Relação: dc.relationEnvironment Systems and Decisions-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectComputer vision-
Palavras-chave: dc.subjectDeep learning-
Palavras-chave: dc.subjectInovtaxon-
Palavras-chave: dc.subjectMachine learning-
Palavras-chave: dc.subjectMorphology-
Palavras-chave: dc.subjectNeural networks-
Palavras-chave: dc.subjectTaxonomy-
Título: dc.titlePlant species identification using color learning resources, shape, texture, through machine learning and artificial neural networks-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.