Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
Autor(es): dc.contributor | Science and Technology | - |
Autor(es): dc.creator | Ferreira, Andréia B. A. [UNESP] | - |
Autor(es): dc.creator | Minussi, Carlos R. [UNESP] | - |
Autor(es): dc.creator | Lotufo, Ana D. P. [UNESP] | - |
Autor(es): dc.creator | Lopes, Mara L. M. [UNESP] | - |
Autor(es): dc.creator | Chavarette, Fábio R. [UNESP] | - |
Autor(es): dc.creator | Abreu, Thays A. | - |
Data de aceite: dc.date.accessioned | 2022-08-04T22:08:26Z | - |
Data de disponibilização: dc.date.available | 2022-08-04T22:08:26Z | - |
Data de envio: dc.date.issued | 2022-04-28 | - |
Data de envio: dc.date.issued | 2022-04-28 | - |
Data de envio: dc.date.issued | 2019-09-01 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.1109/ISGT-LA.2019.8895411 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/11449/221405 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/221405 | - |
Descrição: dc.description | Forecasting electric demand is a fundamental part of the electric power systems, since, it provides useful information on several aspects of the network, acting directly in the planning of generation, transmission and distribution of energy and consequently in the economy of the resources. This work seeks to explore the application of artificial neural networks on the prediction of electric load considering several points of the electrical network (multinodal prediction). A neural model based on adaptive resonance theory (ART), called the Euclidean ARTMAP neural network, was used. This methodology can obtain significant results for the electrical load prediction in a fast, accurate and reliable way. In order to carry out the prediction, the Euclidean ARTMAP neural network was applied in each module (substation) as a Predictive Load System of the Substation (SPCS), which performs the prediction of the loads in an individualized way. Thus, to verify the efficiency of the proposed system, historical data of electrical loads of three substations of the New Zealand Electrical Company were used, aiming to obtain forecasts with a horizon of 24 hours ahead. | - |
Descrição: dc.description | São Paulo State University Department of Electrical Engineering | - |
Descrição: dc.description | São Paulo State University Department of Mathematics | - |
Descrição: dc.description | Federal Institute of Education Science and Technology | - |
Descrição: dc.description | São Paulo State University Department of Electrical Engineering | - |
Descrição: dc.description | São Paulo State University Department of Mathematics | - |
Idioma: dc.language | en | - |
Relação: dc.relation | 2019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America 2019 | - |
???dc.source???: dc.source | Scopus | - |
Palavras-chave: dc.subject | Artificial Neural Networks | - |
Palavras-chave: dc.subject | Electrical Distribution Systems | - |
Palavras-chave: dc.subject | Euclidean ARTMAP Network | - |
Palavras-chave: dc.subject | Multinodal Load Forecasting | - |
Título: dc.title | Multinodal Load Forecast Using Euclidean ARTMAP Neural Network | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: