Spatially biased versus extent of occurrence records in distribution modelling predictions: a study case with South American anurans

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorDe Souza, Yasmim Caroline Mossioli [UNESP]-
Autor(es): dc.creatorVasconcelos, Tiago Silveira [UNESP]-
Data de aceite: dc.date.accessioned2022-08-04T22:07:29Z-
Data de disponibilização: dc.date.available2022-08-04T22:07:29Z-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2018-07-03-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1080/21658005.2018.1502125-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/221149-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/221149-
Descrição: dc.descriptionEcological Niche Modelling (ENM) is used to estimate potential species distributions through the association of general climate data with precise geographic occurrence records. Occurrence data are mainly obtained from museums or other natural history collections. However, these data are usually incomplete and spatially biased compared to actual geographic species’ distribution. Here, we compared predictions of occurrence for 13 widely distributed South American anuran species generated from two series of distribution data: a) original (and biased) point records and b) random distribution points within the extent of occurrence of the species. We compared the distribution predictions for baseline and 2050 climate change scenarios. By using six modelling algorithms, we found that the accuracy measure AUC (Area Under the Curve) of three algorithms (ED, OM-GARP and SVM) presented higher AUC values when the ENMs were generated from the original point records, whereas the other algorithms presented similar AUC values between the ENMs generated from different sets of occurrence data. The size of the predicted areas is larger when the ENMs are generated by random occurrence records (except for the algorithms BIOCLIM and ED), both in the baseline and future climate scenario projections.-
Descrição: dc.descriptionDepartamento de Ciências Biológicas Faculdade de Ciências Universidade Estadual Paulista-
Descrição: dc.descriptionPrograma de Pós-Graduação em Biologia Animal Universidade Estadual Paulista-
Descrição: dc.descriptionDepartamento de Ciências Biológicas Faculdade de Ciências Universidade Estadual Paulista-
Descrição: dc.descriptionPrograma de Pós-Graduação em Biologia Animal Universidade Estadual Paulista-
Formato: dc.format165-171-
Idioma: dc.languageen-
Relação: dc.relationZoology and Ecology-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectAnuran-
Palavras-chave: dc.subjectbiogeography-
Palavras-chave: dc.subjectclimate change-
Palavras-chave: dc.subjectecological niche modelling-
Palavras-chave: dc.subjectmacroecology-
Palavras-chave: dc.subjectNeotropical region-
Título: dc.titleSpatially biased versus extent of occurrence records in distribution modelling predictions: a study case with South American anurans-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.